【題目】如圖,二次函數(shù)的圖像與軸、軸分別交于點(diǎn)和點(diǎn),圖像的對(duì)稱軸交軸于點(diǎn),一次函數(shù)的圖像經(jīng)過點(diǎn)

1)求二次函數(shù)的解析式和一次函數(shù)的解析式;

2)點(diǎn)軸下方的二次函數(shù)圖像上,且,求點(diǎn)的坐標(biāo);

3)結(jié)合圖像,求當(dāng)取什么范圍的值時(shí),有

【答案】1;(2)點(diǎn)的坐標(biāo)為;(3)當(dāng)時(shí),有

【解析】

1)將A、B代入拋物線,可求得二次函數(shù)解析式,然后求出點(diǎn)C的坐標(biāo),根據(jù)B、C的坐標(biāo),求出直線的解析式;

2)設(shè)點(diǎn)軸的距離為,根據(jù)△ACP的大小,可求出h的值,從而得出點(diǎn)P的坐標(biāo);

3)聯(lián)立拋物線和直線解析式,求出交點(diǎn)坐標(biāo),根據(jù)圖像可得出不等式的解集.

1)將點(diǎn)和點(diǎn)代入

解得:

二次函數(shù)的解析式

二次函數(shù)的對(duì)稱軸為直線

將點(diǎn)和點(diǎn)代入

解得:

一次函數(shù)的解析式

2)設(shè)點(diǎn)軸的距離為

,

點(diǎn)軸下方

點(diǎn)的縱坐標(biāo)為-22

代入

解得:

點(diǎn)的坐標(biāo)為

3)聯(lián)立

解得:

拋物線與直線的交點(diǎn)為

由圖像可知,當(dāng)時(shí),有

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:平行四邊形ABCD中,EAB中點(diǎn),AFFD,連E、FACG,則AGGC_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),將點(diǎn)向右平移6個(gè)單位長度,得到點(diǎn)

(1)直接寫出點(diǎn)的坐標(biāo);

(2)若拋物線經(jīng)過點(diǎn),求的值;

(3)若拋物線與線段有且只有一個(gè)公共點(diǎn)時(shí),求拋物線頂點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,,,以為坐標(biāo)原點(diǎn),以所在的直線為軸建立平面直角坐標(biāo)系,如圖.按以下步驟作圖:①分別以點(diǎn),為圓心,以大于的長為半徑作弧,兩弧相交于點(diǎn);②作直線于點(diǎn).則點(diǎn)的坐標(biāo)為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在中,邊上一點(diǎn),過點(diǎn)作于點(diǎn),連接,的中點(diǎn),連接

(觀察猜想)

1)①的數(shù)量關(guān)系是___________

的數(shù)量關(guān)系是______________

(類比探究)

2)將圖①中繞點(diǎn)逆時(shí)針旋轉(zhuǎn),如圖②所示,則(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說明理由;

(拓展遷移)

3)將繞點(diǎn)旋轉(zhuǎn)任意角度,若,請(qǐng)直接寫出點(diǎn)在同一直線上時(shí)的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD中,AB6,BC8,點(diǎn)EBC邊上一點(diǎn),連接DE,把△DCE沿DE折疊,使點(diǎn)C落在點(diǎn)C′處,當(dāng)△BEC′為直角三角形時(shí),BE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,將拋物線y=﹣x2+bx+c與直線y=﹣x+1相交于點(diǎn)A(0,1)和點(diǎn)B(3,﹣2),交x軸于點(diǎn)C,頂點(diǎn)為點(diǎn)F,點(diǎn)D是該拋物線上一點(diǎn).

1)求拋物線的函數(shù)表達(dá)式;

2)如圖1,若點(diǎn)D在直線AB上方的拋物線上,求DAB的面積最大時(shí)點(diǎn)D的坐標(biāo);

3)如圖2,若點(diǎn)D在對(duì)稱軸左側(cè)的拋物線上,且點(diǎn)E1,t)是射線CF上一點(diǎn),當(dāng)以C、BD為頂點(diǎn)的三角形與CAE相似時(shí),求所有滿足條件的t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將線段平移得到線段當(dāng)時(shí),點(diǎn)同時(shí)落在反比例函數(shù)的圖象上,則的值為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E、F分別是邊AD、CD上的點(diǎn),AEED,DFDC14,連接EF并延長交BC的延長線于點(diǎn)G

1)求證:△ABE∽△DEF;

2)若正方形的邊長為10,求BG的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案