(2010•沈陽(yáng))如圖,AB是⊙O的直徑,點(diǎn)C在BA的延長(zhǎng)線上,直線CD與⊙O相切于點(diǎn)D,弦DF⊥AB于點(diǎn)E,線段CD=10,連接BD.
(1)求證:∠CDE=2∠B;
(2)若BD:AB=:2,求⊙O的半徑及DF的長(zhǎng).

【答案】分析:(1)連接OD,根據(jù)弦切角定理得∠CDE=∠EOD,再由同弧所對(duì)的圓心角是圓周角的2倍,可得∠CDE=2∠B;
(2)連接AD,根據(jù)三角函數(shù),求得∠B=30°,則∠EOD=60°,推得∠C=30°,根據(jù)∠C的正切值,求出圓的半徑,再在Rt△CDE中,利用∠C的正弦值,求得DE,從而得出DF的長(zhǎng).
解答:(1)證明:連接OD.
∵直線CD與⊙O相切于點(diǎn)D,
∴OD⊥CD,∠CDO=90°,∠CDE+∠ODE=90°. (2分)
又∵DF⊥AB,∴∠DEO=∠DEC=90°.
∴∠EOD+∠ODE=90°,
∴∠CDE=∠EOD.                       (3分)
又∵∠EOD=2∠B,
∴∠CDE=2∠B.                       (4分)

(2)解:連接AD.
∵AB是⊙O的直徑,
∴∠ADB=90°.                         (5分)
∵BD:AB=,
,
∴∠B=30°.                          (6分)
∴∠AOD=2∠B=60°.
又∵∠CDO=90°,
∴∠C=30°.                          (7分)
在Rt△CDO中,CD=10,
∴OD=10tan30°=,
即⊙O的半徑為.                 (8分)
在Rt△CDE中,CD=10,∠C=30°,
∴DE=CDsin30°=5.                    (9分)
∵DF⊥AB于點(diǎn)E,
∴DE=EF=DF.
∴DF=2DE=10.                        (10分)
點(diǎn)評(píng):本題考查的是切割線定理,切線的性質(zhì)定理,勾股定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2011年浙江省杭州市中考數(shù)學(xué)模擬試卷(32)(解析版) 題型:解答題

(2010•沈陽(yáng))如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+c與x軸正半軸交于點(diǎn)F(16,0),與y軸正半軸交于點(diǎn)E(0,16),邊長(zhǎng)為16的正方形ABCD的頂點(diǎn)D與原點(diǎn)O重合,頂點(diǎn)A與點(diǎn)E重合,頂點(diǎn)C與點(diǎn)F重合.
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖2,若正方形ABCD在平面內(nèi)運(yùn)動(dòng),并且邊BC所在的直線始終與x軸垂直,拋物線始終與邊AB交于點(diǎn)P且同時(shí)與邊CD交于點(diǎn)Q(運(yùn)動(dòng)時(shí),點(diǎn)P不與A,B兩點(diǎn)重合,點(diǎn)Q不與C,D兩點(diǎn)重合).設(shè)點(diǎn)A的坐標(biāo)為(m,n)(m>0).
①當(dāng)PO=PF時(shí),分別求出點(diǎn)P和點(diǎn)Q的坐標(biāo);
②在①的基礎(chǔ)上,當(dāng)正方形ABCD左右平移時(shí),請(qǐng)直接寫(xiě)出m的取值范圍;
③當(dāng)n=7時(shí),是否存在m的值使點(diǎn)P為AB邊的中點(diǎn)?若存在,請(qǐng)求出m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•沈陽(yáng))如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+c與x軸正半軸交于點(diǎn)F(16,0),與y軸正半軸交于點(diǎn)E(0,16),邊長(zhǎng)為16的正方形ABCD的頂點(diǎn)D與原點(diǎn)O重合,頂點(diǎn)A與點(diǎn)E重合,頂點(diǎn)C與點(diǎn)F重合.
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖2,若正方形ABCD在平面內(nèi)運(yùn)動(dòng),并且邊BC所在的直線始終與x軸垂直,拋物線始終與邊AB交于點(diǎn)P且同時(shí)與邊CD交于點(diǎn)Q(運(yùn)動(dòng)時(shí),點(diǎn)P不與A,B兩點(diǎn)重合,點(diǎn)Q不與C,D兩點(diǎn)重合).設(shè)點(diǎn)A的坐標(biāo)為(m,n)(m>0).
①當(dāng)PO=PF時(shí),分別求出點(diǎn)P和點(diǎn)Q的坐標(biāo);
②在①的基礎(chǔ)上,當(dāng)正方形ABCD左右平移時(shí),請(qǐng)直接寫(xiě)出m的取值范圍;
③當(dāng)n=7時(shí),是否存在m的值使點(diǎn)P為AB邊的中點(diǎn)?若存在,請(qǐng)求出m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年遼寧省沈陽(yáng)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•沈陽(yáng))如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+c與x軸正半軸交于點(diǎn)F(16,0),與y軸正半軸交于點(diǎn)E(0,16),邊長(zhǎng)為16的正方形ABCD的頂點(diǎn)D與原點(diǎn)O重合,頂點(diǎn)A與點(diǎn)E重合,頂點(diǎn)C與點(diǎn)F重合.
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖2,若正方形ABCD在平面內(nèi)運(yùn)動(dòng),并且邊BC所在的直線始終與x軸垂直,拋物線始終與邊AB交于點(diǎn)P且同時(shí)與邊CD交于點(diǎn)Q(運(yùn)動(dòng)時(shí),點(diǎn)P不與A,B兩點(diǎn)重合,點(diǎn)Q不與C,D兩點(diǎn)重合).設(shè)點(diǎn)A的坐標(biāo)為(m,n)(m>0).
①當(dāng)PO=PF時(shí),分別求出點(diǎn)P和點(diǎn)Q的坐標(biāo);
②在①的基礎(chǔ)上,當(dāng)正方形ABCD左右平移時(shí),請(qǐng)直接寫(xiě)出m的取值范圍;
③當(dāng)n=7時(shí),是否存在m的值使點(diǎn)P為AB邊的中點(diǎn)?若存在,請(qǐng)求出m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《圓》(12)(解析版) 題型:解答題

(2010•沈陽(yáng))如圖,AB是⊙O的直徑,點(diǎn)C在BA的延長(zhǎng)線上,直線CD與⊙O相切于點(diǎn)D,弦DF⊥AB于點(diǎn)E,線段CD=10,連接BD.
(1)求證:∠CDE=2∠B;
(2)若BD:AB=:2,求⊙O的半徑及DF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年遼寧省沈陽(yáng)市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•沈陽(yáng))如圖,在?ABCD中,點(diǎn)E在邊BC上,BE:EC=1:2,連接AE交BD于點(diǎn)F,則△BFE的面積與△DFA的面積之比為   

查看答案和解析>>

同步練習(xí)冊(cè)答案