【題目】如圖,⊙O是△ABC的外接圓,AC為直徑,弦BD=BABEDCDC的延長(zhǎng)線(xiàn)于點(diǎn)E,求證:

1)∠1=BAD

2BE是⊙O的切線(xiàn).

【答案】1)證明見(jiàn)解析;(2)證明見(jiàn)解析

【解析】

試題分析:(1)根據(jù)等腰三角形的性質(zhì)得到BDA=BAD,再根據(jù)同弧所對(duì)的圓周角相等,即可得到結(jié)論;

2)連接OB,OD,證明△ABO≌△DBO,推出OBDE,繼而判斷BEOB,可得出結(jié)論.

試題解析:(1)∵AB=BD,∴∠BDA=BAD,∵∠1=BDA1=BAD

2)連結(jié)OB,OD,在△ABO和△DBO中,AB=BD,BO=BOOA=OD,∴△ABO≌△DBOSSS),∴∠DBO=∠ABO,∵∠ABO=∠OAB=∠BDC,∴∠DBO=∠BDC,∴OBED,∵BEED,∴EBBO,∴BE是⊙O的切線(xiàn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根

(1)求的取值范圍;

(2)是否存在實(shí)數(shù),使方程兩實(shí)數(shù)根互為相反數(shù)?如果存在,求出的值,如不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,正方形MNPQ網(wǎng)格中,每個(gè)小方格的邊長(zhǎng)都相等,正方形ABCD的頂點(diǎn)在正方形MNPQ4條邊的小方格頂點(diǎn)上.

1)設(shè)正方形MNPQ網(wǎng)格內(nèi)的每個(gè)小方格的邊長(zhǎng)為1,求:正方形ABCD的面積;

2在圖2中畫(huà)出以AB為一條直角邊的等腰直角△ABC,且點(diǎn)C在小正方形的頂點(diǎn)上;

在圖2中畫(huà)出以AB為一邊的菱形ABDE,且點(diǎn)D和點(diǎn)E均在小正方形的頂點(diǎn)上,菱形ABDE的面積為15,連接CE,請(qǐng)直接寫(xiě)出線(xiàn)段CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:正方形OABC置于坐標(biāo)系中,B的坐標(biāo)是(-44),點(diǎn)D是邊OA上一動(dòng)點(diǎn),以OD為邊在第一象限內(nèi)作正方形ODEF

1CDAF有怎樣的位置關(guān)系,猜想并證明;

2)當(dāng)OD=______時(shí),直線(xiàn)CD平分線(xiàn)段AF;

3)在OD=2時(shí),將正方形ODEF繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α°α°180°),求當(dāng)CD、E共線(xiàn)時(shí)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,剪兩張對(duì)邊平行且寬度相同的紙條隨意交叉疊放在一起,轉(zhuǎn)動(dòng)其中一張,重合部分構(gòu)成一個(gè)四邊形,則下列結(jié)論中不一定成立的是( 。

A. ABC=∠ADC,∠BAD=∠BCDB. ABBC

C. ABCD,ADBCD. DAB+BCD180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為點(diǎn)P,直線(xiàn)BF與AD的延長(zhǎng)線(xiàn)交于點(diǎn)F,且∠AFB=∠ABC.

(1)求證:直線(xiàn)BF是⊙O的切線(xiàn).

(2)若CD=2,OP=1,求線(xiàn)段BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等邊三角形ABC,AB=12,以AB為直徑的半圓與BC邊交于點(diǎn)D,過(guò)點(diǎn)DDFAC,垂足為F,過(guò)點(diǎn)FFGAB,垂足為G,連接GD

1)求證:DF與⊙O的位置關(guān)系并證明;

2)求FG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與實(shí)踐:

問(wèn)題情境:

如圖 1,ABCD,∠PAB=25°,∠PCD=37°,求∠APC的度數(shù),小明的思路是:過(guò)點(diǎn)PPEAB,通過(guò)平行線(xiàn)性質(zhì)來(lái)求∠APC

問(wèn)題解決:

1)按小明的思路,易求得∠APC 的度數(shù)為 °;

問(wèn)題遷移:

如圖 2,ABCD,點(diǎn) P 在射線(xiàn) OM 上運(yùn)動(dòng),記∠PAB=α,∠PCD=β

2)當(dāng)點(diǎn) P B,D 兩點(diǎn)之間運(yùn)動(dòng)時(shí),問(wèn)∠APC α,β 之間有何數(shù)量關(guān)系? 請(qǐng)說(shuō)明理由;

拓展延伸:

3)在(2)的條件下,如果點(diǎn) P BD 兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí) (點(diǎn) P 與點(diǎn) O,B,D 三點(diǎn)不重合)請(qǐng)你直接寫(xiě)出當(dāng)點(diǎn) P 在線(xiàn)段 OB 上時(shí),∠APC αβ 之間的數(shù)量關(guān) ,點(diǎn) P 在射線(xiàn) DM 上時(shí),∠APC α,β 之間的數(shù)量關(guān)系

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過(guò)點(diǎn)(﹣1,0),對(duì)稱(chēng)軸為直線(xiàn)x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣,y2)、點(diǎn)C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有(  )

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案