【題目】如圖,一次函數(shù)y=ax﹣1的圖象與反比例函數(shù)y=的圖象交于A,B兩點,與x軸交于點C,與y軸交于點D,已知OA=,tan∠AOC=.
(1)求a,k的值及點B的坐標(biāo);
(2)觀察圖象,請直接寫出不等式ax﹣1≥的解集;
(3)在y軸上存在一點P,使得△PDC與△ODC相似,請你求出P點的坐標(biāo).
【答案】(1)a= ,k=3, B(-,-2) (2) ﹣≤x<0或x≥3;(3) (0,)或(0,0)
【解析】
1)過A作AE⊥x軸,交x軸于點E,在Rt△AOE中,根據(jù)tan∠AOC的值,設(shè)AE=x,得到OE=3x,再由OA的長,利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,確定出A坐標(biāo),將A坐標(biāo)代入一次函數(shù)解析式求出a的值,代入反比例解析式求出k的值,聯(lián)立一次函數(shù)與反比例函數(shù)解析式求出B的坐標(biāo);
(2)由A與B交點橫坐標(biāo),根據(jù)函數(shù)圖象確定出所求不等式的解集即可;
(3)顯然P與O重合時,滿足△PDC與△ODC相似;當(dāng)PC⊥CD,即∠PCD=時,滿足三角形PDC與三角形CDO相等,利用同角的余角相等得到一對角相等,再由一對直角相等得到三角形PCO與三角形CDO相似,由相 似得比例,根據(jù)OD,OC的長求出OP的長,即可確定出P的坐標(biāo).
解:(1)
過A作AE⊥x軸,交x軸于點E,
在Rt△AOE中,OA=,tan∠AOC=,
設(shè)AE=x,則OE=3x,
根據(jù)勾股定理得:OA2=OE2+AE2,即10=9x2+x2,
解得:x=1或x=﹣1(舍去),
∴OE=3,AE=1,即A(3,1),
將A坐標(biāo)代入一次函數(shù)y=ax﹣1中,得:1=3a﹣1,即a=,
將A坐標(biāo)代入反比例解析式得:1=,即k=3,
聯(lián)立一次函數(shù)與反比例解析式得:,
消去y得: x﹣1=,
解得:x=﹣或x=3,
將x=﹣代入得:y=﹣1﹣1=﹣2,即B(﹣,﹣2);
(2)由A(3,1),B(﹣,﹣2),
根據(jù)圖象得:不等式x﹣1≥的解集為﹣≤x<0或x≥3;
(3)顯然P與O重合時,△PDC∽△ODC;
當(dāng)PC⊥CD,即∠PCD=90°時,∠PCO+∠DCO=90°,
∵∠PCD=∠COD=90°,∠PCD=∠CDO,
∴△PDC∽△CDO,
∵∠PCO+∠CPO=90°,
∴∠DCO=∠CPO,
∵∠POC=∠COD=90°,
∴△PCO∽△CDO,
∴=,
對于一次函數(shù)解析式y=x﹣1,令x=0,得到y=﹣1;令y=0,得到x=,
∴C(,0),D(0,﹣1),即OC=,OD=1,
∴=,即OP=,
此時P坐標(biāo)為(0,),
綜上,滿足題意P的坐標(biāo)為(0,)或(0,0).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】P是⊙O內(nèi)一點,過點P作⊙O的任意一條弦AB,我們把PAPB的值稱為點P關(guān)于⊙O的“冪值”
(1)⊙O的半徑為6,OP=4.
①如圖1,若點P恰為弦AB的中點,則點P關(guān)于⊙O的“冪值”為_____;
②判斷當(dāng)弦AB的位置改變時,點P關(guān)于⊙O的“冪值”是否為定值,若是定值,證明你的結(jié)論;若不是定值,求點P關(guān)于⊙0的“冪值”的取值范圍;
(2)若⊙O的半徑為r,OP=d,請參考(1)的思路,用含r、d的式子表示點P關(guān)于⊙O的“冪值”或“冪值”的取值范圍_____;
(3)在平面直角坐標(biāo)系xOy中,C(1,0),⊙C的半徑為3,若在直線y=x+b上存在點P,使得點P關(guān)于⊙C的“冪值”為6,請直接寫出b的取值范圍_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2011山東濟南,22,3分)如圖1,△ABC中,∠C=90°,∠ABC=30°,AC=m,延長CB至點D,使BD=AB.
①求∠D的度數(shù);
②求tan75°的值.
(2)如圖2,點M的坐標(biāo)為(2,0),直線MN與y軸的正半軸交于點N,∠OMN=75°.求直線MN的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在中,,
(1)用尺規(guī)在邊BC上求作一點P,使;(不寫作法,保留作圖痕跡)
(2)連接AP當(dāng)為多少度時,AP平分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)作圖發(fā)現(xiàn):
如圖1,已知,小涵同學(xué)以、為邊向外作等邊和等邊,連接,.這時他發(fā)現(xiàn)與的數(shù)量關(guān)系是 .
(2)拓展探究:
如圖2,已知,小涵同學(xué)以、為邊向外作正方形和正方形,連接,,試判斷與之間的數(shù)量關(guān)系,并說明理由.
(3)解決問題
如圖3,要測量池塘兩岸相對的兩點,的距離,已經(jīng)測得,,米,,則 米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明平時喜歡玩“開心消消樂”游戲,本學(xué)期在學(xué)校組織的幾次數(shù)學(xué)反饋性測試中,小明的數(shù)學(xué)成績?nèi)缦卤?/span>:
月份 | (第二年元月) | (第二年2月) | ||||
成績(分) | ··· | ··· |
(1)以月份為x軸,成績?yōu)?/span>y軸,根據(jù)上表提供的數(shù)據(jù)在平面直角坐標(biāo)系中描點;
(2)觀察(1)中所描點的位置關(guān)系,猜想與之間的的函數(shù)關(guān)系,并求出所猜想的函數(shù)表達(dá)式;
(3)若小明繼續(xù)沉溺于“開心消消樂“游戲,照這樣的發(fā)展趨勢,請你估計元月(此時)份的考試中小明的數(shù)學(xué)成績,并用一句話對小明提出一些建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在坐標(biāo)系中放置一菱形OABC,已知∠ABC=60°,點B在y軸上,OA=1,先將菱形OABC沿x軸的正方向無滑動翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2017次,點B的落點依次為B1,B2,B3,…,則B2017的坐標(biāo)為( 。
A. (1345,0) B. (1345.5,) C. (1345,) D. (1345.5,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市正在舉行文化藝術(shù)節(jié)活動,一商店抓住商機,決定購進(jìn)甲,乙兩種藝術(shù)節(jié)紀(jì)念品.若購進(jìn)甲種紀(jì)念品4件,乙種紀(jì)念品3件,需要550元,若購進(jìn)甲種紀(jì)念品5件,乙種紀(jì)念品6件,需要800元.
(1)求購進(jìn)甲、乙兩種紀(jì)念品每件各需多少元?
(2)若該商店決定購進(jìn)這兩種紀(jì)念品共80件,其中甲種紀(jì)念品的數(shù)量不少于60件.考慮到資金周轉(zhuǎn),用于購買這80件紀(jì)念品的資金不能超過7100元,那么該商店共有幾種進(jìn)貨方案7
(3)若銷售每件甲種紀(jì)含晶可獲利潤20元,每件乙種紀(jì)念品可獲利潤30元.在(2)中的各種進(jìn)貨方案中,若全部銷售完,哪一種方案獲利最大?最大利利潤多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一段路基的橫斷面是直角梯形,如圖1,已知原來坡面的坡角α的正弦值為0.6,現(xiàn)不改變土石方量,全部利用原有土石方進(jìn)行坡面改造,使坡度變小,達(dá)到如右下圖2的技術(shù)要求.試求出改造后坡面的坡度是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com