對正方形ABCD分劃如圖①,其中E、F分別是BC、CD的中點,M、N、G分別是OB、OD、EF的中點,沿分劃線可以剪出一副由七塊部件組成的“七巧板”.如果設(shè)正方形OGFN的邊長為l.用這副七巧板拼成的一個五邊形如圖②,其周長是________.

6+4
分析:仔細觀察五邊形從而發(fā)現(xiàn)其各邊與正方形OGFN的邊的關(guān)系,則不難求得五邊形的周長.
解答:觀察圖形得TS=QR=1,RS=4,QP=TP=2,
∴五邊形的周長=QP+TP+TS+QR+RS=6+4
故答案為:6+4
點評:此題主要考查學生對勾股定理及正方形的性質(zhì)的運用及觀察分析圖形的能力.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)對正方形ABCD分劃如圖①,其中E、F分別是BC、CD的中點,M、N、G分別是OB、OD、EF的中點,沿分劃線可以剪出一副由七塊部件組成的“七巧板”.
(1)如果設(shè)正方形OGFN的邊長為l,這七塊部件的各邊長中,從小到大的四個不同值分別為l、x1、x2、x3,那么x1=
 
;各內(nèi)角中最小內(nèi)角是
 
度,最大內(nèi)角是
 
度;用它們拼成的一個五邊形如圖②,其面積是
 
;
(2)請用這副七巧板,既不留下一絲空自,又不相互重疊,拼出2種邊數(shù)不同的凸多邊形,畫在下面格點圖中,并使凸多邊形的頂點落在格點圖的小黑點上;(格點圖中,上下、左右相鄰兩點距離都為1)
(3)某合作學習小組在玩七巧板時發(fā)現(xiàn):“七巧板拼成的凸多邊形,其邊數(shù)不能超過8”.你認為這個結(jié)論正確嗎?請說明理由.注:不能拼成與圖①或②全等的多邊形!
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

對正方形ABCD分劃如圖①,其中E、F分別是BC、CD的中點,M、N、G分別是OB、OD、EF的中點,沿分劃線可以剪出一副由七塊部件組成的“七巧板”.如果設(shè)正方形OGFN的邊長為l.用這副七巧板拼成的一個五邊形如圖②,其周長是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

對正方形ABCD分劃如圖①,其中E、F分別是BC、CD的中點,M、N、G分別是OB、OD、EF的中點,沿分劃線可以剪出一副由七塊部件組成的“七巧板”.
(1)如果設(shè)正方形OGFN的邊長為l,這七塊部件的各邊長中,從小到大的四個不同值分別為l、x1、x2、x3,那么x1=______;各內(nèi)角中最小內(nèi)角是______度,最大內(nèi)角是______度;用它們拼成的一個五邊形如圖②,其面積是______;
(2)請用這副七巧板,既不留下一絲空自,又不相互重疊,拼出2種邊數(shù)不同的凸多邊形,畫在下面格點圖中,并使凸多邊形的頂點落在格點圖的小黑點上;(格點圖中,上下、左右相鄰兩點距離都為1)
(3)某合作學習小組在玩七巧板時發(fā)現(xiàn):“七巧板拼成的凸多邊形,其邊數(shù)不能超過8”.你認為這個結(jié)論正確嗎?請說明理由.注:不能拼成與圖①或②全等的多邊形!

查看答案和解析>>

科目:初中數(shù)學 來源:浙江省中考真題 題型:解答題

對正方形ABCD分劃如圖①,其中E、F分別是BC、CD的中點,M、N、G分別是OB、OD、EF的中點,沿分劃線可以剪出一副由七塊部件組成的“七巧板”。
(1)如果設(shè)正方形OGFN的邊長為1,這七塊部件的各邊長中,從小到大的四個不同值分別為1、x1、x2、x3,那么x1=_______;各內(nèi)角中最小內(nèi)角是______度,最大內(nèi)角是______度;用它們拼成的一個五邊形如圖②,其面積是_______;
(2)請用這副七巧板,既不留下一絲空自,又不相互重疊,拼出2種邊數(shù)不同的凸多邊形,畫在下面格點圖中,并使凸多邊形的頂點落在格點圖的小黑點上(格點圖中,上下、左右相鄰兩點距離都為1);(3)某合作學習小組在玩七巧板時發(fā)現(xiàn):“七巧板拼成的凸多邊形,其邊數(shù)不能超過8”,你認為這個結(jié)論正確嗎?請說明理由。

注:不能拼成與圖①或②全等的多邊形!

查看答案和解析>>

科目:初中數(shù)學 來源:2006年浙江省寧波市教育局中學一級、高級教師職務(wù)評審考核筆試卷(解析版) 題型:解答題

對正方形ABCD分劃如圖①,其中E、F分別是BC、CD的中點,M、N、G分別是OB、OD、EF的中點,沿分劃線可以剪出一副由七塊部件組成的“七巧板”.如果設(shè)正方形OGFN的邊長為l.用這副七巧板拼成的一個五邊形如圖②,其周長是______

查看答案和解析>>

同步練習冊答案