14.問(wèn)題:如圖(1),點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.
【發(fā)現(xiàn)證明】小聰把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請(qǐng)你利用圖(1)證明上述結(jié)論.
【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點(diǎn)E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足∠BAD=2∠EAF關(guān)系時(shí),仍有EF=BE+FD.
【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點(diǎn)E、F,且AE⊥AD,DF=40($\sqrt{3}$-1)米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(zhǎng)(結(jié)果取整數(shù),參考數(shù)據(jù):$\sqrt{2}$=1.41,$\sqrt{3}$=1.73)

分析 【發(fā)現(xiàn)證明】根據(jù)旋轉(zhuǎn)的性質(zhì)可以得到△ADG≌△ABE,則GF=BE+DF,只要再證明△AFG≌△AFE即可.
【類比引申】延長(zhǎng)CB至M,使BM=DF,連接AM,證△ADF≌△ABM,證△FAE≌△MAE,即可得出答案;
【探究應(yīng)用】利用等邊三角形的判定與性質(zhì)得到△ABE是等邊三角形,則BE=AB=80米.把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)150°至△ADG,只要再證明∠BAD=2∠EAF即可得出EF=BE+FD.

解答 【發(fā)現(xiàn)證明】證明:如圖(1),∵△ADG≌△ABE,
∴AG=AE,∠DAG=∠BAE,DG=BE,
又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,
∴∠GAF=∠FAE,
在△GAF和△FAE中,
$\left\{\begin{array}{l}{AG=AE}\\{∠GAF=∠FAE}\\{AF=AF}\end{array}\right.$,
∴△AFG≌△AFE(SAS),
∴GF=EF,
又∵DG=BE,
∴GF=BE+DF,
∴BE+DF=EF;

【類比引申】∠BAD=2∠EAF.
理由如下:如圖(2),延長(zhǎng)CB至M,使BM=DF,連接AM,
∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,
∴∠D=∠ABM,
在△ABM和△ADF中,
$\left\{\begin{array}{l}{AB=AD}\\{∠ABM=∠D}\\{BM=DF}\end{array}\right.$,
∴△ABM≌△ADF(SAS),
∴AF=AM,∠DAF=∠BAM,
∵∠BAD=2∠EAF,
∴∠DAF+∠BAE=∠EAF,
∴∠EAB+∠BAM=∠EAM=∠EAF,
在△FAE和△MAE中,
$\left\{\begin{array}{l}{AE=AE}\\{∠FAE=∠MAE}\\{AF=AM}\end{array}\right.$,
∴△FAE≌△MAE(SAS),
∴EF=EM=BE+BM=BE+DF,
即EF=BE+DF.
故答案是:∠BAD=2∠EAF.

【探究應(yīng)用】如圖3,把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)150°至△ADG,連接AF,過(guò)A作AH⊥GD,垂足為H.
∵∠BAD=150°,∠DAE=90°,
∴∠BAE=60°.
又∵∠B=60°,
∴△ABE是等邊三角形,
∴BE=AB=80米.
根據(jù)旋轉(zhuǎn)的性質(zhì)得到:∠ADG=∠B=60°,
又∵∠ADF=120°,
∴∠GDF=180°,即點(diǎn)G在 CD的延長(zhǎng)線上.
易得,△ADG≌△ABE,
∴AG=AE,∠DAG=∠BAE,DG=BE,
又∵AH=80×$\frac{\sqrt{3}}{2}$=40$\sqrt{3}$,HF=HD+DF=40+40($\sqrt{3}$-1)=40$\sqrt{3}$
故∠HAF=45°,
∴∠DAF=∠HAF-∠HAD=45°-30°=15°
從而∠EAF=∠EAD-∠DAF=90°-15°=75°
又∵∠BAD=150°=2×75°=2∠EAF
∴根據(jù)上述推論有:EF=BE+DF=80+40($\sqrt{3}$-1)≈109(米),即這條道路EF的長(zhǎng)約為109米.

點(diǎn)評(píng) 此題主要考查了四邊形綜合題,關(guān)鍵是正確畫出圖形,證明∠BAD=2∠EAF.此題是一道綜合題,難度較大,題目所給例題的思路,為解決此題做了較好的鋪墊.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

4.正八邊形的每一個(gè)內(nèi)角是135°,每一個(gè)外角是45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.甲、乙兩位同學(xué)為校藝術(shù)節(jié)制作彩旗,已知每小時(shí)甲比乙多制作5面彩旗,甲制作60面彩旗與乙制作50面彩旗所用時(shí)間相同.求甲每小時(shí)制作采取的數(shù)量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,一艘貨輪位于燈塔P北偏東53°方向,距離燈塔100海里的A處,另一艘客輪位于貨輪正南方向,且在燈塔P南偏東45°方向的B處,求此時(shí)兩艘輪船之間的距離AB.(結(jié)果精確到1海里)
【參考數(shù)據(jù):sin53°=0.799,cos53°=0.602,tan53°=1.327】

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.感知:如圖①,點(diǎn)B、A、C在同一條直線上,DB⊥BC,EC⊥BC,且∠DAE=90°,AD=AE,易證△DBA≌△ACE.
探究:如圖②,在△DBA和△ACE中,AD=AE,若∠DAE=α(0°<α<90°),∠BAC=2α,∠B=∠C=180°-α,求證:△DBA≌△ACE.
應(yīng)用:如圖②,在△DBA和△ACE中,AD=AE,若∠DAE=70°,∠BAC=140°,∠B=∠C=110°,則當(dāng)∠D=35°時(shí),∠DAC的度數(shù)是∠E的3倍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

19.計(jì)算:(sin30°)-1-(2016)0+|1-$\sqrt{3}$|=$\sqrt{3}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

6.請(qǐng)從以下兩個(gè)小題中個(gè)任意選一作答,若對(duì)選,則按第一題計(jì)分.
A.如圖,為測(cè)量一幢大樓的高度,在地面上距離樓底O點(diǎn)20m的點(diǎn)A處,測(cè)得樓頂B點(diǎn)的仰角∠OAB=60°,則這幢大樓的高度為34.6m(用科學(xué)計(jì)算器計(jì)算,結(jié)果精確到0.1米).
B.PM2.5是指大氣中直徑小于或等于0.0000025m的顆粒物,將0.0000025用科學(xué)記數(shù)法表示為2.5×10-6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

3.如圖1,在平面直角坐標(biāo)系中,將?ABCD放置在第一象限,且AB∥x軸.直線y=-x從原點(diǎn)出發(fā)沿x軸正方向平移,在平移過(guò)程中直線被平行四邊形截得的線段長(zhǎng)度l與直線在x軸上平移的距離m的函數(shù)圖象如圖2所示,那么AD的長(zhǎng)為$\sqrt{10}$或$\frac{5\sqrt{10}}{4}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如果把分式$\frac{2n}{m-n}$中的m和n都擴(kuò)大2倍,那么分式的值(  )
A.不變B.擴(kuò)大2倍C.縮小2倍D.擴(kuò)大4倍

查看答案和解析>>

同步練習(xí)冊(cè)答案