閱讀以下的材料:
如果兩個(gè)正數(shù)a,b,即a>0,b>0,則有下面的不等式:當(dāng)且僅當(dāng)a=b時(shí)取到等號(hào)
我們把叫做正數(shù)a,b的算術(shù)平均數(shù),把叫做正數(shù)a,b的幾何平均數(shù),于是上述不等式可表述為:兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于(即大于或等于)它們的幾何平均數(shù).它在數(shù)學(xué)中有廣泛的應(yīng)用,是解決最大(。┲祮(wèn)題的有力工具,下面舉一例子:
例:已知x>0,求函數(shù)的最小值.
解:另,則有,得,當(dāng)且僅當(dāng)時(shí),即x=2時(shí),函數(shù)有最小值,最小值為2.
根據(jù)上面回答下列問(wèn)題
①已知x>0,則當(dāng)x=______
【答案】分析:根據(jù)閱讀材料可以得到兩個(gè)正數(shù)的算術(shù)平均數(shù)一定大于或等于幾何平均數(shù).
(1)令a=2x,b=,這兩個(gè)數(shù)都是正數(shù),根據(jù):就可以直接得到結(jié)果.
(2)設(shè)這個(gè)矩形的長(zhǎng)為x米,則寬=面積÷長(zhǎng),即寬=米,則所用的籬笆總長(zhǎng)為2倍的長(zhǎng)+2倍的寬,本題就可以轉(zhuǎn)化為兩個(gè)負(fù)數(shù)的和的問(wèn)題,從而根據(jù):求解.
(3)將原函數(shù)變?yōu)椋?img src="http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021233306885127099/SYS201310212333068851270022_DA/4.png">==x+-2,則原函數(shù)的最大值,即為現(xiàn)在函數(shù)的最小值.
解答:解:①已知x>0,得=,當(dāng)僅當(dāng)2x=時(shí),即x=時(shí),函數(shù)取到最小值,最小值為;
則當(dāng)x=時(shí),函數(shù)取到最小值,最小值為
②設(shè)這個(gè)矩形的長(zhǎng)為x米,則寬為米,所用的籬笆總長(zhǎng)為y米,
根據(jù)題意得:y=2x+
由上述性質(zhì)知:
∵x>0
∴2x+≥40
此時(shí),2x=
∴x=10
答:當(dāng)這個(gè)矩形的長(zhǎng)、寬各為10米時(shí),所用的籬笆最短,最短的籬笆是40米;
③令==x+-2≥4,
當(dāng)且僅當(dāng)x=時(shí),取最小值為4,
∴當(dāng)x=3時(shí),y最大=
點(diǎn)評(píng):本題是閱讀型問(wèn)題,解題的關(guān)鍵是讀懂題目中給出的已給信息,理解閱讀材料介紹的知識(shí),主要培養(yǎng)自學(xué)能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀以下的材料:
如果兩個(gè)正數(shù)a,b,即a>0,b>0,則有下面的不等式:
a+b
2
ab
當(dāng)且僅當(dāng)a=b時(shí)取到等號(hào)
我們把
a+b
2
叫做正數(shù)a,b的算術(shù)平均數(shù),把
ab
叫做正數(shù)a,b的幾何平均數(shù),于是上述不等式可表述為:兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于(即大于或等于)它們的幾何平均數(shù).它在數(shù)學(xué)中有廣泛的應(yīng)用,是解決最大(小)值問(wèn)題的有力工具,下面舉一例子:
例:已知x>0,求函數(shù)y=x+
4
x
的最小值.
解:另a=x,b=
4
x
,則有a+b≥2
ab
,得y=x+
4
x
≥2
x•
4
x
=4
,當(dāng)且僅當(dāng)x=
4
x
時(shí),即x=2時(shí),函數(shù)有最小值,最小值為2.
根據(jù)上面回答下列問(wèn)題
①已知x>0,則當(dāng)x=
 
時(shí),函數(shù)y=2x+
3
x
取到最小值,最小值為
 
;
②用籬笆圍一個(gè)面積為100m2的矩形花園,問(wèn)這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),所用的籬笆最短,最短的籬笆是多少?
③已知x>0,則自變量x取何值時(shí),函數(shù)y=
x
x2-2x+9
取到最大值,最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:河北省模擬題 題型:解答題

閱讀以下的材料:
如果兩個(gè)正數(shù)a,b,即a>0,b>0,有下面的不等式:
當(dāng)且僅當(dāng)a=b時(shí)取到等號(hào),我們把叫做正數(shù)的算術(shù)平均數(shù),把叫做正數(shù)a,b的幾何平均數(shù),于是上述不等式可表述為:兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于(即大于或等于)它們的幾何平均數(shù)。它在數(shù)學(xué)中有廣泛的應(yīng)用,是解決最值問(wèn)題的有力工具。下面舉一例子:
例:已知x>0,求函數(shù)的最小值。
解:令a=x,,則有,得,當(dāng)且僅當(dāng)時(shí),即x=2時(shí),函數(shù)有最小值,最小值為2。
根據(jù)上面回答下列問(wèn)題:
①已知x>0,則當(dāng)x=______時(shí),函數(shù)取到最小值,最小值為_(kāi)_____;
②用籬笆圍一個(gè)面積為100m2的矩形花園,問(wèn)這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),所用的籬笆最短,最短的籬笆周長(zhǎng)是多少;
③已知x>0,則自變量x取何值時(shí),函數(shù)取到最大值,最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年江蘇省鹽城市東臺(tái)實(shí)驗(yàn)中學(xué)中考數(shù)學(xué)模擬試卷(6月份)(解析版) 題型:解答題

閱讀以下的材料:
如果兩個(gè)正數(shù)a,b,即a>0,b>0,則有下面的不等式:當(dāng)且僅當(dāng)a=b時(shí)取到等號(hào)
我們把叫做正數(shù)a,b的算術(shù)平均數(shù),把叫做正數(shù)a,b的幾何平均數(shù),于是上述不等式可表述為:兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于(即大于或等于)它們的幾何平均數(shù).它在數(shù)學(xué)中有廣泛的應(yīng)用,是解決最大(小)值問(wèn)題的有力工具,下面舉一例子:
例:已知x>0,求函數(shù)的最小值.
解:另,則有,得,當(dāng)且僅當(dāng)時(shí),即x=2時(shí),函數(shù)有最小值,最小值為2.
根據(jù)上面回答下列問(wèn)題
①已知x>0,則當(dāng)x=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年浙江省寧波市中考數(shù)學(xué)模擬試卷(八)(解析版) 題型:解答題

閱讀以下的材料:
如果兩個(gè)正數(shù)a,b,即a>0,b>0,則有下面的不等式:當(dāng)且僅當(dāng)a=b時(shí)取到等號(hào)
我們把叫做正數(shù)a,b的算術(shù)平均數(shù),把叫做正數(shù)a,b的幾何平均數(shù),于是上述不等式可表述為:兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于(即大于或等于)它們的幾何平均數(shù).它在數(shù)學(xué)中有廣泛的應(yīng)用,是解決最大(。┲祮(wèn)題的有力工具,下面舉一例子:
例:已知x>0,求函數(shù)的最小值.
解:另,則有,得,當(dāng)且僅當(dāng)時(shí),即x=2時(shí),函數(shù)有最小值,最小值為2.
根據(jù)上面回答下列問(wèn)題
①已知x>0,則當(dāng)x=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年浙江省寧波市中考數(shù)學(xué)模擬試卷(六)(解析版) 題型:解答題

閱讀以下的材料:
如果兩個(gè)正數(shù)a,b,即a>0,b>0,則有下面的不等式:當(dāng)且僅當(dāng)a=b時(shí)取到等號(hào)
我們把叫做正數(shù)a,b的算術(shù)平均數(shù),把叫做正數(shù)a,b的幾何平均數(shù),于是上述不等式可表述為:兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于(即大于或等于)它們的幾何平均數(shù).它在數(shù)學(xué)中有廣泛的應(yīng)用,是解決最大(。┲祮(wèn)題的有力工具,下面舉一例子:
例:已知x>0,求函數(shù)的最小值.
解:另,則有,得,當(dāng)且僅當(dāng)時(shí),即x=2時(shí),函數(shù)有最小值,最小值為2.
根據(jù)上面回答下列問(wèn)題
①已知x>0,則當(dāng)x=______

查看答案和解析>>

同步練習(xí)冊(cè)答案