已知Rt△ABC中,∠C=90°,AC=6,BC=8,將它的一個銳角翻折,使該銳角頂點落在其對邊的中點D處,折痕交另一直角邊于E,交斜邊于F,則△CDE的周長為   
【答案】分析:解題過程中應注意折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質,折疊前后圖形的形狀和大小不變.
解答:解:當角B翻折時,B點與D點重合,DE與EC的和就是BC,也就是說等8,CD為AC的一半,故△CDE的周長為8+3=11;
當A翻折時,A點與D點重合.同理DE與EC的和為AC=6,CD為BC的一半,所以CDE的周長為6+4=10.故△CDE的周長為10.
點評:本題考查圖形的翻折變換.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,已知Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AB邊所在的直線為軸,將△ABC旋轉一周,則所得幾何體的表面積是(  )
A、
168
5
π
B、24π
C、
84
5
π
D、12π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、如圖所示,已知Rt△ABC中,AB=AC,BD平分∠ABC,CE⊥BD交BD延長線于E,BA、CE延長線相交于F點.
求證:(1)△BCF是等腰三角形;(2)BD=2CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

25、已知Rt△ABC中,∠ACB=90°,AB=5,兩直角邊AC、BC的長是關于x的方程x2-(m+5)x+6m=0的兩個實數(shù)根.求m的值及AC、BC的長(BC>AC).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、如圖,已知Rt△ABC中,∠C=90°∠A=36°,以C為圓心,CB為半徑的圓交AB于P,則弧BP的度數(shù)是
72
°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知Rt△ABC中,∠ACB=90°,CA=CB,點D在BC的延長線上,點E在AC上,且CD=CE,延長BE交AD于點F,求證:BF⊥AD.

查看答案和解析>>

同步練習冊答案