【題目】已知關(guān)于x的一元二次方程x2+2x+=0有實(shí)數(shù)根,k為正整數(shù).
(1)求k的值;
(2)當(dāng)此方程有兩個(gè)非零的整數(shù)根時(shí),將關(guān)于x的二次函數(shù)y=x2+2x+的圖象向下平移9個(gè)單位,求平移后的圖象的表達(dá)式;
(3)在(2)的條件下,平移后的二次函數(shù)的圖象與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B左側(cè)),直線y=kx+b(k>0)過(guò)點(diǎn)B,且與拋物線的另一個(gè)交點(diǎn)為C,直線BC上方的拋物線與線段BC組成新的圖象,當(dāng)此新圖象的最小值大于﹣5時(shí),求k的取值范圍.

【答案】解:(1)∵關(guān)于x的一元二次方程x2+2x+=0有實(shí)數(shù)根,
∴△=b2﹣4ac=4﹣4×≥0,
∴k﹣1≤2,
∴k≤3,
∵k為正整數(shù),
∴k的值是1,2,3;
(2)∵方程有兩個(gè)非零的整數(shù)根,
當(dāng)k=1時(shí),x2+2x=0,不合題意,舍去,
當(dāng)k=2時(shí),x2+2x+=0,
方程的根不是整數(shù),不合題意,舍去,
當(dāng)k=3時(shí),x2+2x+1=0,
解得:x1=x2=﹣1,符合題意,
∴k=3,
∴y=x2+2x+1,
∴平移后的圖象的表達(dá)式y(tǒng)=x2+2x+1﹣9=x2+2x﹣8;
(3)令y=0,x2+2x﹣8=0,
∴x1=﹣4,x2=2,
∵與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B左側(cè)),
∴A(﹣4,0),B(2,0),
∵直線l:y=kx+b(k>0)經(jīng)過(guò)點(diǎn)B,
∴函數(shù)新圖象如圖所示,當(dāng)點(diǎn)C在拋物線對(duì)稱(chēng)軸左側(cè)時(shí),新函數(shù)的最小值有可能大于﹣5,
令y=﹣5,即x2+2x﹣8=﹣5,
解得:x1=﹣3,x2=1,(不合題意,舍去),
∴拋物線經(jīng)過(guò)點(diǎn)(﹣3,﹣5),
當(dāng)直線y=kx+b(k>0)經(jīng)過(guò)點(diǎn)(﹣3,﹣5),(2,0)時(shí),
可求得k=1,
由圖象可知,當(dāng)0<k<1時(shí)新函數(shù)的最小值大于﹣5.

【解析】(1)根據(jù)方程有實(shí)數(shù)根可得△≥0,求出k的取值范圍,然后根據(jù)k為正整數(shù)得出k的值;
(2)根據(jù)方程有兩個(gè)非零的整數(shù)根進(jìn)行判斷,得出k=3,然后得出函數(shù)解析式,最后根據(jù)平移的性質(zhì)求出平移后的圖象的表達(dá)式;
(3)令y=0,得出A、B的坐標(biāo),作出圖象,然后根據(jù)新函數(shù)的最小值大于﹣5,求出C的坐標(biāo),然后根據(jù)B、C的坐標(biāo)求出此時(shí)k的值,即可得出k的取值范圍.
【考點(diǎn)精析】掌握二次函數(shù)的概念是解答本題的根本,需要知道一般地,自變量x和因變量y之間存在如下關(guān)系:一般式:y=ax2+bx+c(a≠0,a、b、c為常數(shù)),則稱(chēng)y為x的二次函數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:
在學(xué)習(xí)《圓》這一章時(shí),老師給同學(xué)們布置了一道尺規(guī)作圖題:
尺規(guī)作圖:過(guò)圓外一點(diǎn)作圓的切線.
已知:P為⊙O外一點(diǎn).
求作:經(jīng)過(guò)點(diǎn)P的⊙O的切線.
小敏的作法如下:
如圖,
(1)連接OP,作線段OP的垂直平分線MN交OP于點(diǎn)C;
(2)以點(diǎn)C為圓心,CO的長(zhǎng)為半徑作圓,交⊙O于A,B兩點(diǎn);
(3)作直線PA,PB.所以直線PA,PB就是所求作的切線.
老師認(rèn)為小敏的作法正確.
請(qǐng)回答:連接OA,OB后,可證∠OAP=∠OBP=90°,其依據(jù)是 ;由此可證明直線PA,PB都是⊙O的切線,其依據(jù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖1,△ABC中,∠C=90°,AB的垂直平分線交AC于點(diǎn)D,連接BD.若AC=2,BC=1,求△BCD的周長(zhǎng)為;
(2)O為正方形ABCD的中心,E為CD邊上一點(diǎn),F(xiàn)為AD邊上一點(diǎn),且△EDF的周長(zhǎng)等于AD的長(zhǎng).
①在圖2中求作△EDF(要求:尺規(guī)作圖,不寫(xiě)作法,保留作圖痕跡);
②在圖3中補(bǔ)全圖形,求∠EOF的度數(shù);
③若 , 求的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)分別是邊AD,AB的中點(diǎn),EF交AC于點(diǎn)H,則的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算

(1)﹣22×7﹣(﹣3)×6+5;

(2)化簡(jiǎn)3(m﹣2n+2)﹣(﹣2m﹣3n)﹣1;

(3)解方程:2(2x+1)﹣(10x+1)=6;

(4)=2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).

(1)把△ABC向上平移2個(gè)單位長(zhǎng)度,再向右平移1個(gè)單位長(zhǎng)度后得到△A1B1C1,請(qǐng)畫(huà)出△A1B1C1,并寫(xiě)出點(diǎn)A1,B1,C1的坐標(biāo);

(2)求△A1B1C1的面積;

(3)點(diǎn)P在坐標(biāo)軸上,且△A1B1P的面積是2,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的圖形經(jīng)折疊后形成如圖所示的棱柱.

這個(gè)棱柱有幾個(gè)側(cè)面?側(cè)面?zhèn)數(shù)與底面邊數(shù)有什么關(guān)系?

中哪些圖形的形狀與大小一定完全相同?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是正方形,直線,,分別通過(guò)A,B,C三點(diǎn),且,若的距離為5,的距離為7,則正方形ABCD的面積等于( )

A. 148 B. 70 C. 144 D. 74

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知直線y=﹣2x+4與兩坐標(biāo)軸分別交于點(diǎn)A、B,點(diǎn)C為線段OA上一動(dòng)點(diǎn),連接BC,作BC的中垂線分別交OB、AB交于點(diǎn)D、E

l當(dāng)點(diǎn)C與點(diǎn)O重合時(shí),DE=

2當(dāng)CEOB時(shí),證明此時(shí)四邊形BDCE為菱形;

3在點(diǎn)C的運(yùn)動(dòng)過(guò)程中,直接寫(xiě)出OD的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案