(2009•蕪湖)如圖,上下底面為全等的正六邊形禮盒,其正視圖與側(cè)視圖均由矩形構成,正視圖中大矩形邊長如圖所示,側(cè)視圖中包含兩全等的矩形,如果用彩色膠帶如圖包扎禮盒,所需膠帶長度至少為( )

A.320cm
B.395.24cm
C.431.77cm
D.480cm
【答案】分析:由正視圖知道,高是20cm,兩頂點之間的最大距離為60,應利用正六邊形的性質(zhì)求得底面對邊之間的距離,然后所有棱長相加即可.
解答:解:根據(jù)題意,作出實際圖形的上底,如圖:AC,CD是上底面的兩邊.作CB⊥AD于點B,
則BC=15,AC=30,∠ACD=120°
那么AB=AC×sin60°=15,
所以AD=2AB=30
膠帶的長至少=30×6+20×6≈431.77cm.
故選C.
點評:本題考查立體圖形的三視圖和學生的空間想象能力;注意知道正六邊形兩個頂點間的最大距離求對邊之間的距離需構造直角三角形利用相應的三角函數(shù)求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2009•蕪湖)如圖,在平面直角坐標系中放置一直角三角板,其頂點為A(-1,0),B(0,),O(0,0),將此三角板繞原點O順時針旋轉(zhuǎn)90°,得到△A′B′O.
(1)如圖,一拋物線經(jīng)過點A,B,B′,求該拋物線解析式;
(2)設點P是在第一象限內(nèi)拋物線上一動點,求使四邊形PBAB′的面積達到最大時點P的坐標及面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年中考數(shù)學基礎知識大串講(解析版) 題型:解答題

(2009•蕪湖)如圖,在平面直角坐標系中放置一直角三角板,其頂點為A(-1,0),B(0,),O(0,0),將此三角板繞原點O順時針旋轉(zhuǎn)90°,得到△A′B′O.
(1)如圖,一拋物線經(jīng)過點A,B,B′,求該拋物線解析式;
(2)設點P是在第一象限內(nèi)拋物線上一動點,求使四邊形PBAB′的面積達到最大時點P的坐標及面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年安徽省蕪湖市中考數(shù)學試卷(解析版) 題型:解答題

(2009•蕪湖)如圖,在平面直角坐標系中放置一直角三角板,其頂點為A(-1,0),B(0,),O(0,0),將此三角板繞原點O順時針旋轉(zhuǎn)90°,得到△A′B′O.
(1)如圖,一拋物線經(jīng)過點A,B,B′,求該拋物線解析式;
(2)設點P是在第一象限內(nèi)拋物線上一動點,求使四邊形PBAB′的面積達到最大時點P的坐標及面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《圓》(11)(解析版) 題型:解答題

(2009•蕪湖)如圖,在Rt△ABC中,斜邊BC=12,∠C=30°,D為BC的中點,△ABD的外接圓⊙O與AC交于F點,過A作⊙O的切線AE交DF的延長線于E點.
(1)求證:AE⊥DE;
(2)計算:AC•AF的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年安徽省蕪湖市中考數(shù)學試卷(解析版) 題型:選擇題

(2009•蕪湖)如圖所示的4×4正方形網(wǎng)格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=( )

A.330°
B.315°
C.310°
D.320°

查看答案和解析>>

同步練習冊答案