已知方程ax2+bx+cy=0(a,b,c是常數(shù)),請你通過變形把它寫成你所熟悉的一個(gè)函數(shù)表達(dá)式的形式,則函數(shù)表達(dá)式為
y=-
a
c
x2-
b
c
x
y=-
a
c
x2-
b
c
x
,成立的條件是
a≠0且c≠0
a≠0且c≠0
,是
二次
二次
函數(shù).
分析:移項(xiàng),系數(shù)化為1,轉(zhuǎn)化成用x表示y的函數(shù)關(guān)系式,然后根據(jù)二次函數(shù)的定義解答.
解答:解:由ax2+bx+cy=0得,y=-
a
c
x2-
b
c
x,
當(dāng)a≠0且c≠0時(shí),是二次函數(shù),
故答案為:y=-
a
c
x2-
b
c
x;a≠0且c≠0;二次.
點(diǎn)評:本題考查了二次函數(shù)的定義,二次函數(shù)y=ax2+bx+c的定義條件是:a、b、c為常數(shù),a≠0,自變量最高次數(shù)為2.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

38、給出下列四個(gè)判斷:(1)線段是軸對稱圖形,它只有一條對稱軸;(2)各邊相等的圓外切多邊形是正多方形;(3)一組對邊相等,一條對角線被另一條對角線平分的四邊形是平行四邊形;(4)已知方程ax2+bx+c=0中,a、b、c是實(shí)數(shù),且b2-4ac>0,那么這個(gè)方程有兩個(gè)不相等的實(shí)數(shù)根.
其中不正確的判斷有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知方程ax2+bx+c=0(a≠0)有一根是1,那么a+b+c=
0
0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知方程ax2+bx+c=0(a≠0),請你寫一個(gè)一元二次方程,使得a=1且b2-4ac=1:
x2+3x+2=0
x2+3x+2=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知方程ax2+bx+c=0有兩個(gè)正根,則下述結(jié)論:(1)a,b,c>0(2)a,b,c<0(3)a>0,b,c<0(4)a<0,b,c>0中,肯定錯(cuò)誤的結(jié)論有幾個(gè)(  )
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊答案