(2013•南昌)某單位組織34人分別到井岡山和瑞金進(jìn)行革命傳統(tǒng)教育,到井岡山的人數(shù)是到瑞金的人數(shù)的2倍多1人,求到兩地的人數(shù)各是多少?設(shè)到井岡山的人數(shù)為x人,到瑞金的人數(shù)為y人.下面所列的方程組正確的是(  )
分析:設(shè)到井岡山的人數(shù)為x人,到瑞金的人數(shù)為y人,根據(jù)共34人進(jìn)行革命傳統(tǒng)教育,到井岡山的人數(shù)是到瑞金的人數(shù)的2倍多1人,即可得出方程組.
解答:解:設(shè)到井岡山的人數(shù)為x人,到瑞金的人數(shù)為y人,
由題意得:
x+y=34
x=2y+1

故選B.
點(diǎn)評(píng):本題考查了有實(shí)際問(wèn)題抽象出二元一次方程組,難度一般,關(guān)鍵是讀懂題意設(shè)出未知數(shù)找出等量關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南昌模擬)某校為了解八年級(jí)400名學(xué)生的自然科學(xué)素質(zhì),隨機(jī)抽查了50名學(xué)生進(jìn)行自然科學(xué)測(cè)試,所得成績(jī)整理分成五組,并制成如下頻數(shù)分布表和扇形統(tǒng)計(jì)圖,請(qǐng)根據(jù)頻數(shù)分布表和扇形統(tǒng)計(jì)圖所提供的信息解答下列問(wèn)題:
最終成績(jī)(分)
5分制
原成績(jī)(分)
百分制
頻數(shù)
1 (分) x<60 3
2 (分) 60≤x<70 m
3 (分) 70≤x<80 10
4 (分) 80≤x<90 n
5 (分) 90≤x≤100 11
(1)頻數(shù)分布表中的m=
6
6
,n=
20
20

(2)樣本的中位數(shù)是
4
4
分(5分制),扇形統(tǒng)計(jì)圖中,得4分這組所對(duì)應(yīng)的扇形圓心角是
144
144
度;
(3)請(qǐng)估計(jì)該校八年級(jí)學(xué)生自然科學(xué)測(cè)試的平均最終成績(jī).
(4)若這次測(cè)試最終成績(jī)得4分與5分者為優(yōu)秀,請(qǐng)你估計(jì)該校八年級(jí)的學(xué)生中,自然科學(xué)測(cè)試成績(jī)?yōu)閮?yōu)秀的大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南昌)某機(jī)構(gòu)對(duì)30萬(wàn)人的調(diào)查顯示,沉迷于手機(jī)上網(wǎng)的初中生大約占7%,則這部分沉迷于手機(jī)上網(wǎng)的初中生人數(shù),可用科學(xué)記數(shù)法表示為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南昌)生活中很多礦泉水沒(méi)有喝完便被扔掉,造成極大的浪費(fèi),為此數(shù)學(xué)興趣小組的同學(xué)對(duì)某單位的某次會(huì)議所用礦泉水的浪費(fèi)情況進(jìn)行調(diào)查,為期半天的會(huì)議中,每人發(fā)一瓶500ml的礦泉水,會(huì)后對(duì)所發(fā)礦泉水喝的情況進(jìn)行統(tǒng)計(jì),大致可分為四種:A、全部喝完;B、喝剩約
13
;C、喝剩約一半;D開(kāi)瓶但基本未喝.同學(xué)們根據(jù)統(tǒng)計(jì)結(jié)果繪制成如下兩個(gè)統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:

(1)參加這次會(huì)議的有多少人?在圖(2)中D所在扇形的圓心角是多少度?并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若開(kāi)瓶但基本未喝算全部浪費(fèi),試計(jì)算這次會(huì)議平均每人浪費(fèi)的礦泉水約多少毫升?(計(jì)算結(jié)果請(qǐng)保留整數(shù))
(3)據(jù)不完全統(tǒng)計(jì),該單位每年約有此類會(huì)議60次,每次會(huì)議人數(shù)約在40至60人之間,請(qǐng)用(2)中計(jì)算的結(jié)果,估計(jì)該單位一年中因此類會(huì)議浪費(fèi)的礦泉水(500ml/瓶)約有多少瓶?(可使用科學(xué)記算器)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南昌)某數(shù)學(xué)活動(dòng)小組在作三角形的拓展圖形,研究其性質(zhì)時(shí),經(jīng)歷了如下過(guò)程:
(1)操作發(fā)現(xiàn):在等腰△ABC中,AB=AC,分別以AB和AC為斜邊,向△ABC的外側(cè)作等腰直角三角形,如圖1所示,其中DF⊥AB于點(diǎn)F,EG⊥AC于點(diǎn)G,M是BC的中點(diǎn),連接MD和ME,則下列結(jié)論正確的是
①②③④
①②③④
(填序號(hào)即可)
①AF=AG=
12
AB;②MD=ME;③整個(gè)圖形是軸對(duì)稱圖形;④MD⊥ME.
(2)數(shù)學(xué)思考:在任意△ABC中,分別以AB和AC為斜邊,向△ABC的外側(cè)作等腰直角三角形,如圖2所示,M是BC的中點(diǎn),連接MD和ME,則MD和ME具有怎樣的數(shù)量關(guān)系?請(qǐng)給出證明過(guò)程;
(3)類比探究:
(i)在任意△ABC中,仍分別以AB和AC為斜邊,向△ABC的內(nèi)側(cè)作等腰直角三角形,如圖3所示,M是BC的中點(diǎn),連接MD和ME,試判斷△MED的形狀.答:
等腰直角三角形
等腰直角三角形

(ii)在三邊互不相等的△ABC中(見(jiàn)備用圖),仍分別以AB和AC為斜邊,向△ABC的內(nèi)側(cè)作(非等腰)直角三角形ABD和(非等腰)直角三角形ACE,M是BC的中點(diǎn),連接MD和ME,要使(2)中的結(jié)論此時(shí)仍然成立,你認(rèn)為需增加一個(gè)什么樣的條件?(限用題中字母表示)并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案