【題目】將邊長為4的正方形ABCD置于平面直角坐標(biāo)系中,使AB邊落在x軸的正半軸上且A點的坐標(biāo)是,直線y=x與線段CD交于點E.
(1)直線經(jīng)過點C且與軸交于點F.求四邊形AFCD的面積.
(2)若直線經(jīng)過點E和點F,求直線的解析式.
(3)若直線經(jīng)過點且與直線平行,將(2)中直線沿著軸向上平移1個單位得到直線,直線交軸于點M,交直線于點N,求的面積.
【答案】(1)S梯形AFCD=10;(2);(3)S△NMG=3.9.
【解析】
(1)先求出點F的坐標(biāo),繼而可求出AF的長,然后判斷四邊形AFCD為直角梯形,進(jìn)一步即可求出結(jié)果;
(2)先求出點E坐標(biāo),再利用待定系數(shù)法求解即可;
(3)先利用待定系數(shù)法求出直線的函數(shù)解析式,再利用平移規(guī)律求出直線的解析式,然后可求出點M、N的坐標(biāo),再利用即可求出結(jié)果.
解:(1)對于直線,令y=0,得x=2,∴F(2,0) ,
∵A(1,0) ,∴AF=1
由題意得:AB=BC=CD=DA=4,AB∥CD,AD⊥AB,
∴ 四邊形AFCD為直角梯形,
∴;
(2) 對于直線,令y=4,得x=4,∴E(4,4) ,
設(shè)直線的解析式為:,
將點E、F代入解得:,解得:,
∴直線的解析式為;
(3)因為直線與直線y=-3x平行,可設(shè)直線解析式為,
將點代入,得,解得,
∴直線解析式為,
令y=0,解得x=,∴點H,
∵將直線沿著軸向上平移1個單位得到直線,
∴直線的解析式的為,
令y=0,解得x=,∴點M .
聯(lián)立,解得 ,∴點N,
∴ .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某高科技發(fā)展公司投資500萬元,成功研制出一種市場需求量較大的高科技替代產(chǎn)品,并投入資金1500萬元進(jìn)行批量生產(chǎn),已知生產(chǎn)每件產(chǎn)品的成本為40元.在銷售過程中發(fā)現(xiàn),年銷售單價定為100元時,年銷售量為20萬件;銷售單價每增加10元,年銷售量將減少1萬件,設(shè)銷售單價為x(元),年銷售量為y(萬件),年獲利(年獲利=年銷售額-生產(chǎn)成本-投資)為z(萬元).
(1)試寫出y與x之間的函數(shù)關(guān)系式(不必寫出x的取值范圍);
(2)試寫出z與x之間的函數(shù)關(guān)系式(不必寫出x的取值范圍);
(3)計算銷售單價為160元時的年獲利,并說明同樣的年獲利,銷售單價還可定為多少元?相應(yīng)的年銷售量分別為多少萬件?
(4)公司計劃:在第一年按年獲利最大確定的銷售單價,進(jìn)行銷售;第二年年獲利不低于1130萬元.請你借助函數(shù)的大致圖象說明,第二年的銷售單價x(元)應(yīng)確定在什么范圍內(nèi)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y1=x+m與x軸、y軸分別交于點A、B,與雙曲線(x<0)分別交于點C、D,且C點的坐標(biāo)為(﹣1,2).
(1)分別求出直線AB及雙曲線的解析式;
(2)求出點D的坐標(biāo);
(3)利用圖象直接寫出:當(dāng)x在什么范圍內(nèi)取值時,y1>y2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P點坐標(biāo)為(2,2),l1⊥l2,l1.l2分別交x軸和y軸于A點和B點,則四邊形OAPB的面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在的正方形方格中,每個小正方形的邊長都為1,頂點都在網(wǎng)格線交點處的三角形, 是一個格點三角形.
在圖中,請判斷與是否相似,并說明理由;
在圖中,以O為位似中心,再畫一個格點三角形,使它與的位似比為2:1
在圖中,請畫出所有滿足條件的格點三角形,它與相似,且有一條公共邊和一個公共角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形 ABCD 中,過點 D 作 DE AB 于點 E ,點 F在邊 CD 上, DF BE ,連接 AF , BF .
(1)求證:四邊形 BFDE 是矩形;
(2)若 AF 平分 DAB , CF3,BF4 ,求 DF 長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=AC,AB的垂直平分線DE交AB、AC于點E、D,若△ABC和△BCD的周長分別為21cm和13cm,求△ABC的各邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線AC、BD相交于點G,E為AD的中點,連結(jié)BE交AC于F,連結(jié)FD,若∠BFA=90°,則下列四對三角形:①△BEA與△ACD②△FED與△DEB③△CFD與△ABG④△ADF與△CFB中相似的為( )
A. ①④B. ①②C. ②③④D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在任意四邊形ABCD中,AC,BD是對角線,E、F、G、H分別是線段BD、BC、AC、AD上的點,對于四邊形EFGH的形狀,某班的學(xué)生在一次數(shù)學(xué)活動課中,通過動手實踐,探索出如下結(jié)論,其中錯誤的是( )
A. 當(dāng)E,F,G,H是各條線段的中點時,四邊形EFGH為平行四邊形
B. 當(dāng)E,F,G,H是各條線段的中點,且AC⊥BD時,四邊形EFGH為矩形
C. 當(dāng)E,F,G,H是各條線段的中點,且AB=CD時,四邊形EFGH為菱形
D. 當(dāng)E,F,G,H不是各條線段的中點時,四邊形EFGH可以為平行四邊形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com