如圖,已知AB∥DC,AE平分∠BAD,CD與AE相交于點F,∠CFE=∠E.試說明AD∥BC.完成推理過程:
∵AB∥DC(已知)
∴∠1=
 
 

∵AE平分∠BAD(已知)
∴∠1=∠2 (角平分線的定義)
 
=
 
 

∵∠CFE=∠E(已知)
∴∠2=
 
(等量代換)
∴AD∥BC (
 
考點:平行線的判定與性質(zhì)
專題:推理填空題
分析:由AB與CD平行,利用兩直線平行內(nèi)錯角相等得到一對角相等,再由AE為角平分線得到一對角相等,等量代換得到一對內(nèi)錯角相等,利用內(nèi)錯角相等兩直線平行即可得證.
解答:證明:∵AB∥DC(已知)
∴∠1=∠CFE(兩直線平行,同位角相等)
∵AE平分∠BAD(已知)
∴∠1=∠2(角平分線的定義)
∴∠CFE=∠2(等量代換)
∵∠CFE=∠E(已知)
∴∠2=∠E(等量代換)
∴AD∥BC(內(nèi)錯角相等,兩直線平行).
故答案為:∠CFE;兩直線平行,內(nèi)錯角相等;∠CFE;∠2;等量代換;∠E;內(nèi)錯角相等,兩直線平行.
點評:此題考查了平行線的判定與性質(zhì),熟練掌握平行線的判定與性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,∠MON=20°,A為射線OM上一點,OA=4,D為射線ON上一點,OD=8,C為射線AM上任意一點,B是線段OD上任意一點,那么折線ABCD的長AB+BC+CD的最小值是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

閱讀材料:把形如ax2+bx+c的二次三項式(或其一部分)配成完全平方式的方程叫做配方法.配方法的基本形式是完全平方公式的逆寫,即a2±2ab+b2=(a±b)2
例如:二次三項式x2-2x+4運用配方法進行變形,可得:
x2-2x+4=x2-2x
+1+3
.
=x2-2•x•
1
.
+
12
.
+3=(x-1)2+3
;x2-2x+4=x2
-4x
.
+4
+2x
.
=x2-
2•x•2
.
+22+2x=(x-2)2+2x
x2-2x+4=
1
4
x2
.
-2x+4
+
3
4
x2
.
=(
1
2
x
.
)2-2•
1
2
x
.
•2+22+
3
4
x2=(
1
2
x-2)2+
3
4
x2

因此(x-1)2
+3
.
,(x-2)2
+2x
.
(
1
2
x-2)2
+
3
4
x2
.
是x2-2x+4的三種不同形式的配方式(即“余項”分別是常數(shù)項、一次項、二次項--見橫線上的部分).
(1)比照上面的示例,寫出x2+12x+16的三種不同形式的配方式;
(2)將a2+4ab+b2配方(至少兩種形式);
(3)運用配方法解決問題:已知a2-4ab+5b2+c2-6b-2c+10=0,求a+b+c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)計算:|
3
-2|-2-1+sin60°-(2013-π)0;
(2)先化簡,再求值:(1-
1
x-1
)÷
x
x2-1
,其中x=-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=8,AD=6,點P、Q分別是AB邊和CD邊上的動點,點P從點A向點B運動,點Q從點C向點D運動,且保持AP=CQ.設(shè)AP=x.
(1)當(dāng)PQ∥AD時,求x的值;
(2)若線段PQ的垂直平分線與BC邊相交于點M,設(shè)BM=y,求y關(guān)于x的函數(shù)關(guān)系式;
(3)若線段PQ的垂直平分線始終與BC邊相交,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先化簡再求值:(
3x
x-1
-
x
x+1
)•
x2-1
x
,然后請你取一個合適的x值代入求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

龍巖市某中學(xué)2013屆九年級(1)班學(xué)生為四川雅安災(zāi)區(qū)人民開展募捐活動,募捐活動共收得募捐款2200元.班委會決定拿出不少于850元但不超過900元的募捐款直接匯給災(zāi)區(qū)紅十字會,其余募捐款直接用于為災(zāi)區(qū)某校九年級(1)班50名同學(xué)每人購買一個文具盒或一個書包,并郵寄給他們,假定郵費共計30元;已知每個書包的單價比每個文具盒多12元,用176元恰好可以買到4個文具盒和3個書包.
(1)求每個文具盒和每個書包的價格分別為多少元;
(2)有幾種購買文具盒和書包的方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點O是等邊△ABC內(nèi)一點,∠AOB=10°,∠BOC=α.將△BOC繞點C按順時針方向旋轉(zhuǎn)60°得△ADC,連結(jié)OD.
(1)求證:△COD是等邊三角形;
(2)探究:當(dāng)α為多少度時,△AOD是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解方程:
(1)
2-x
x-3
+
1
3-x
=1;
(2)
2
x+3
+
3
2
=
7
2x+6

查看答案和解析>>

同步練習(xí)冊答案