【題目】若兩條拋物線的頂點(diǎn)相同,則稱它們?yōu)?/span>“友好拋物線”,拋物線C1:y1=﹣2x2+4x+2與C2:u2=﹣x2+mx+n為“友好拋物線”.
(1)求拋物線C2的解析式.
(2)點(diǎn)A是拋物線C2上在第一象限的動(dòng)點(diǎn),過A作AQ⊥x軸,Q為垂足,求AQ+OQ的最大值.
(3)設(shè)拋物線C2的頂點(diǎn)為C,點(diǎn)B的坐標(biāo)為(﹣1,4),問在C2的對(duì)稱軸上是否存在點(diǎn)M,使線段MB繞點(diǎn)M逆時(shí)針旋轉(zhuǎn)90°得到線段MB′,且點(diǎn)B′恰好落在拋物線C2上?若存在求出點(diǎn)M的坐標(biāo),不存在說明理由.
【答案】(1) u2=﹣x2+2x+3;(2) ;(3) (1,2)或(1,5).
【解析】試題分析:(1)先求得y1頂點(diǎn)坐標(biāo),然后依據(jù)兩個(gè)拋物線的頂點(diǎn)坐標(biāo)相同可求得m、n的值;
(2)設(shè)A(a,-a2+2a+3).則OQ=x,AQ=-a2+2a+3,然后得到OQ+AQ與a的函數(shù)關(guān)系式,最后依據(jù)配方法可求得OQ+AQ的最值;
(3)連接BC,過點(diǎn)B′作B′D⊥CM,垂足為D.接下來證明△BCM≌△MDB′,由全等三角形的性質(zhì)得到BC=MD,CM=B′D,設(shè)點(diǎn)M的坐標(biāo)為(1,a).則用含a的式子可表示出點(diǎn)B′的坐標(biāo),將點(diǎn)B′的坐標(biāo)代入拋物線的解析式可求得a的值,從而得到點(diǎn)M的坐標(biāo).
試題解析:
(1)∵y1=﹣2x2+4x+2=﹣﹣2(x﹣1)2+4,
∴拋物線C1的頂點(diǎn)坐標(biāo)為(1,4).
∵拋物線C1:與C2頂點(diǎn)相同,
∴ =1,﹣1+m+n=4.
解得:m=2,n=3.
∴拋物線C2的解析式為u2=﹣x2+2x+3.
(2)如圖1所示:
設(shè)點(diǎn)A的坐標(biāo)為(a,﹣a2+2a+3).
∵AQ=﹣a2+2a+3,OQ=a,
∴AQ+OQ=﹣a2+2a+3+a=﹣a2+3a+3=﹣(a﹣)2+ .
∴當(dāng)a=時(shí),AQ+OQ有最大值,最大值為.
(3)如圖2所示;連接BC,過點(diǎn)B′作B′D⊥CM,垂足為D.
∵B(﹣1,4),C(1,4),拋物線的對(duì)稱軸為x=1,
∴BC⊥CM,BC=2.
∵∠BMB′=90°,
∴∠BMC+∠B′MD=90°.
∵B′D⊥MC,
∴∠MB′D+∠B′MD=90°.
∴∠MB′D=∠BMC.
在△BCM和△MDB′中,
,
∴△BCM≌△MDB′
∴BC=MD,CM=B′D.
設(shè)點(diǎn)M的坐標(biāo)為(1,a).則B′D=CM=4﹣a,MD=CB=2.
∴點(diǎn)B′的坐標(biāo)為(a﹣3,a﹣2).
∴﹣(a﹣3)2+2(a﹣3)+3=a﹣2.
整理得:a2﹣7a﹣10=0.
解得a=2,或a=5.
當(dāng)a=2時(shí),M的坐標(biāo)為(1,2),
當(dāng)a=5時(shí),M的坐標(biāo)為(1,5).
綜上所述當(dāng)點(diǎn)M的坐標(biāo)為(1,2)或(1,5)時(shí),B′恰好落在拋物線C2上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90o,O為AB上一點(diǎn),以O(shè)為圓心,OB長(zhǎng)為半徑的圓,交BC邊于點(diǎn)D,與AC邊相切于點(diǎn)E.
(1)求證:BE平分∠ABC;
(2)若CD︰BD=1︰2,AC=4,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.
(1)求證:BE=CF;
(2)如果AB=8,AC=6,求AE、BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“百度”搜索引擎中輸入“姚明”,能搜索到與之相關(guān)的網(wǎng)頁約27000000個(gè),將這個(gè)數(shù)用科學(xué)記數(shù)法表示為( 。
A.2.7×105
B.2.7×106
C.2.7×107
D.2.7×108
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(a,2)與點(diǎn)B(3,b)關(guān)于x軸對(duì)稱,則a+b的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)二次函數(shù)的圖象為C1.二次函數(shù)的圖象與C1關(guān)于y軸對(duì)稱.
(1)求二次函數(shù)的解析式;
(2)當(dāng)≤0時(shí),直接寫出的取值范圍;
(3)設(shè)二次函數(shù)圖象的頂點(diǎn)為點(diǎn)A,與y軸的交點(diǎn)為點(diǎn)B,一次函數(shù)( k,m為常數(shù),k≠0)的圖象經(jīng)過A,B兩點(diǎn),當(dāng)時(shí),直接寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答下列各題:
(1)x取何值時(shí),代數(shù)式3x+2的值不大于代數(shù)式4x+3的值?
(2)當(dāng)m為何值時(shí),關(guān)于x的方程 x-1=m的解不小于3?
(3)已知不等式2(x+3)-4<0, 化簡(jiǎn):︳4x+1︱-︱2-4x︱.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明到一家文具店給全班同學(xué)購買期末考試用的2B鉛筆和0.5毫米的黑色墨水簽字筆. 經(jīng)了解,若給全班學(xué)生每人購買1套考試用筆(1支2B鉛筆和1支0.5毫米的黑色墨水簽字筆為1套),只能按零售價(jià)付款,需要100元;若多購買10套考試用筆,則可以按批發(fā)價(jià)付款,同樣也需要100元;小明經(jīng)過計(jì)算發(fā)現(xiàn)按批發(fā)價(jià)購買5套考試用筆與按零售價(jià)購買4套考試用筆所付錢款數(shù)相等,小明所在班級(jí)學(xué)生有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com