精英家教網 > 初中數學 > 題目詳情

【題目】如圖,△ABC中,∠C=90°,BC=6,AC=4.點P、Q分別從點A、B同時出發(fā),點P沿A→C的方向以每秒1個單位長的速度向點C運動,點Q沿B→C的方向以每秒2個單位長的速度向點C運動.當其中一個點先到達點C時,點P、Q停止運動當四邊形ABQP的面積是△ABC面積的一半時,求點P運動的時間

【答案】點P運動的時間是1秒

【解析】試題分析:先設出AP,BQ,PC,QC關于AP的長度,再利用四邊形ABQP的面積是ABC面積的一半作為等量關系,列方程,解方程.

試題解析:

設點P運動了x秒,則APx,BQ2x.

AC4,BC6得:PC4x,QC62x.

根據題意得:

∵ ∠C90

解得:

經檢驗,x6舍去

答:點P運動的時間是1秒.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使BOC=120°.將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

(1)將圖1中的三角板繞點O按每秒10°的速度沿逆時針方向旋轉一周.在旋轉的過程中,假如第t秒時,OA、OC、ON三條射線構成相等的角,求此時t的值為多少?

(2)將圖1中的三角板繞點O順時針旋轉圖2,使ON在AOC的內部,請?zhí)骄浚?/span>AOMNOC之間的數量關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,直線MN與直線AB、CD分別交于點E、F,∠1與∠2互補.

(1)試判斷直線AB與直線CD的位置關系,并說明理由;

(2)如圖2,∠BEF與∠EFD的角平分線交于點P,EP與CD交于點G,點H是MN上一點,且GH⊥EG,求證:PF∥GH;

(3)如圖3,在(2)的條件下,連接PH,K是GH上一點使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請求出其值;若變化,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,⊙O直徑AB和弦CD相交于點E,AE=2,EB=6,DEB=30°,求弦CD長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算下列各式,且把結果化為只含有正整數指數的形式:

1)(x23yz13 ;(2a2b32a1b3

3)(3a3b2c125ab2c32;(4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,正方形ABCD的頂點坐標分別為 A(1,1),B(1,-1),C(-1,-1),D(-1,1),y軸上有一點 P(0,2).作點P關于點A的對稱點P1,作點P1關于點B的對稱點P2,作點P2關于點C的對稱軸P3,作點P3關于點D的對稱點P4,作點P4關于點A的對稱點P5,作點P5關于點B的對稱點P6,…,按此操作下去,則點P2016的坐標為(

A. (0,2) B. (2,0) C. (0,-2) D. (-2,0)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知一條直線過點(0,4),且與拋物線y=x2交于A,B兩點,其中點A的橫坐標是-2.

(1)求這條直線的解析式及點B的坐標;

(2)在x軸上是否存在點C,使得△ABC是直角三角形?若存在,求出點C的坐標,若不存在,請說明理由;

(3)過線段AB上一點P,作PM∥x軸,交拋物線于點M,點M在第一象限,點N(0,1),當點M的橫坐標為何值時,MN+3MP的長度最大?最大值是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在直角三角形ABC中,∠C=90°,點OAB上的一點,以點O為圓心,OA為半徑的圓弧與BC相切于點D,交AC于點E,連接AD

1)求證:AD平分∠BAC;

2)已知AE=2,DC=,求圓弧的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將一條長為60cm的卷尺鋪平后折疊,使得卷尺自身的一部分重合,然后在重合部分(陰影處)沿與卷尺邊垂直的方向剪一刀,此時卷尺分為了三段,若這三段長度由短到長的比為1:2:3,則折痕對應的刻度的可能性有 ( )

A. 4種 B. 5種 C. 6種 D. 7種

查看答案和解析>>

同步練習冊答案