已知:在△ABC中,AB=6,BC=8,AC=10,O為AB邊上的一點(diǎn),以O(shè)為圓心,OA長(zhǎng)為半徑作圓交AC于D點(diǎn),過D作⊙O的切線交BC于E.
(1)若O為AB的中點(diǎn)(如圖1),則ED與EC的大小關(guān)系為:ED EC(填“”“”或“”)
(2)若OA<3時(shí)(如圖2),(1)中的關(guān)系是否還成立?為什么?
(3)當(dāng)⊙O過BC中點(diǎn)時(shí)(如圖3),求CE長(zhǎng).
(1)ED=EC;(2)成立;(3)3
【解析】
試題分析:(1)連接OD,根據(jù)切線的性質(zhì)可得∠ODE=90°,則∠CDE+∠ADO=90°,由AB=6,BC=8,AC=10根據(jù)勾股定理的逆定理可證得∠ABC=90°,則∠A+∠C=90°,根據(jù)圓的基本性質(zhì)可得∠A=∠ADO,即可得到∠CDE=∠C,從而證得結(jié)論;
(2)證法同(1);
(3)根據(jù)直角三角形的性質(zhì)結(jié)合圓的基本性質(zhì)求解即可.
(1)連接OD
∵DE為⊙O的切線
∴∠ODE=90°
∴∠CDE+∠ADO=90°
∵AB=6,BC=8,AC=10
∴∠ABC=90°
∴∠A+∠C=90°
∵AO=DO
∴∠A=∠ADO
∴∠CDE=∠C
∴ED=EC;
(2)連接OD
∵DE為⊙O的切線
∴∠ODE=90°
∴∠CDE+∠ADO=90°
∵AB=6,BC=8,AC=10
∴∠ABC=90°
∴∠A+∠C=90°
∵AO=DO
∴∠A=∠ADO
∴∠CDE=∠C
∴ED=EC;
(3)CE=3.
考點(diǎn):圓的綜合題
點(diǎn)評(píng):此類問題綜合性強(qiáng),難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
1 |
a |
a2-2a+1 |
a |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com