【題目】下列條件中,不能判定四邊形ABCD是平行四邊形的是( )
A. ,B. ,
C. ,D. ,
【答案】C
【解析】
根據(jù)平行四邊形的判定條件,即可判斷出正確答案.
A、∵AB=CD,AD=BC,
∴四邊形ABCD是平行四邊形,
故A可以判斷四邊形ABCD是平行四邊形;
B、∵AB∥CD,∴∠B+∠C=180°,
∵∠B=∠D,
∴∠D+∠C=180°,
∴AC∥BD,
∴四邊形ABCD是平行四邊形,
故B可以判斷四邊形ABCD是平行四邊形;
C、∵AB∥CD,AD=BC,
∴四邊形ABCD可能是平行四邊形,有可能是等腰梯形.
故C不可以判斷四邊形ABCD是平行四邊形
D、∵AB∥CD,AB=CD,
∴四邊形ABCD是平行四邊形,
故D可以判斷四邊形ABCD是平行四邊形;
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班抽查了10名同學(xué)的期末成績,以80分為基準(zhǔn),超出的記為正數(shù),不足的記為負(fù)數(shù),記錄的結(jié)果如下:+8,-3,+12,-7,-10,-3,-8,+1,0,+10.
(1)這10名同學(xué)中最高分是多少?最低分是多少?
(2)10名同學(xué)中,低于80分的所占的百分比是多少?
(3)10名同學(xué)的總成績是多少?平均成績是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是 內(nèi)一點, 與 相交于 、 兩點,且與 、 分別相切于點 、, .連接 、.
(1)求證: .
(2)已知 , .求四邊形 是矩形時 的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】輪船沿江從A港順流行駛到B港,比從B港返回A港少用3小時,若船速為26千米/時,水速為2千米/時,求A港和B港相距多少千米.設(shè)A港和B港相距x千米.根據(jù)題意,可列出的方程是(。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把邊長為1厘米的6個相同正方體擺成如圖的形式.
(1)畫出該幾何體的主視圖、左視圖、俯視圖;
(2)直接寫出該幾何體的表面積為 cm2(包括底面);
(3)如果在這個幾何體上再添加一些相同的小正方體,并保持這個幾何體的左視圖和俯視圖不變,那么最多可以再添加 小正方體.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知矩形ABCD中,E是AD邊上的一個動點,點F,G,H分別是BC,BE,CE的中點.
(1)求證:△BGF≌△FHC;
(2)設(shè)AD=a,當(dāng)四邊形EGFH是正方形時,求矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察圖形,解答問題:
(1)按下表已填寫的形式填寫表中的空格:
圖① | 圖② | 圖③ | |
三個角上三個數(shù)的積 | 1×(-1)×2=-2 | (-3)×(-4)×(-5)=-60 | |
三個角上三個數(shù)的和 | 1+(-1)+2=2 | (-3)+(-4)+(-5)=-12 | |
積與和的商 | (-2)÷2=-1 |
(2)請用你發(fā)現(xiàn)的規(guī)律求出圖④中的數(shù)x和圖⑤中的數(shù)y.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知RtΔABC,∠C=90°,D為BC的中點.以AC為直徑的圓O交AB于點E.
(1)求證:DE是圓O的切線.
(2)若AE:EB=1:2,BC=6,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com