【題目】在 RtABC 中,ACB 90,點O在 BC 上,經(jīng)過點 的⊙ O 與 BC ,AB 分別相交于點 D ,E 連接 CE , CE CA .
(1)求證: CE 是⊙ O 的切線;
(2)若 tan ABC ,BD 4,求CD 的長.
【答案】(1)見解析;(2) .
【解析】
(1) 連接OE,由CE=CA得∠A=∠CEA,由OE=OB得∠B=∠OEB,故∠CEA+∠OEB=90°,所以∠OEC =90°;
(2)設CD的長為,則BC=+4,CO=2+,由tan∠ABC=,得AC=BC=(+4) ,由CE=CA,得CE=(+4) ,利用勾股定理得 .
(1) 解:連接OE,
∵CE=CA,
∴∠A=∠CEA,
∵OE=OB,
∴∠B=∠OEB,
∵∠ACB=90°,
∴∠A+∠B=90°,
∴∠CEA+∠OEB=90°,
∴∠OEC =90°,
∴CE是⊙的切線
(2)設CD的長為,
∵BD=4,
∴BC=+4,
CO=2+,
∵tan∠ABC=,
∴AC=BC=(+4) ,
∵CE=CA,
∴CE=(+4)
在Rt△CEO中,,
∴,
∴,
∴CD的長為.
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列等式,并探究
①
②
③
……
(1)寫出第④個等式:______;
(2)某同學發(fā)現(xiàn),四個連續(xù)自然數(shù)的積加上1后,結(jié)果都將是某一個整數(shù)的平方.當這四個數(shù)較大時可以進行簡便計算,如:
.
請你猜想寫出第n個等式,用含有n的代數(shù)式表示,并通過計算驗證你的猜想.
(3)任何實數(shù)的平方都是非負數(shù)(即),一個非負數(shù)與一個正數(shù)的和必定是一個正數(shù)(即時,).根據(jù)以上的規(guī)律和方法試說明:無論x為什么實數(shù),多項式的值永遠都是正數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】保護生態(tài)環(huán)境,建設綠色社會已經(jīng)從理念變?yōu)槿藗兊男袆樱郴S2014年1月的利潤為200萬元.設2014年1月為第1個月,第x個月的利潤為y萬元.由于排污超標,該廠決定從2014年1月底起適當限產(chǎn),并投入資金進行治污改造,導致月利潤明顯下降,從1月到5月,y與x成反比例,到5月底,治污改造工程順利完工,從這時起,該廠每月的利潤比前一個月增加20萬元(如圖).
(1)分別求該化工廠治污期間及治污改造工程完工后,y與x之間的函數(shù)關系式;
(2)治污改造工程順利完工后經(jīng)過幾個月,該廠月利潤才能達到200萬元?
(3)當月利潤少于100萬元時,為該廠資金緊張期,問該廠資金緊張期共有幾個月?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在的正方形方格中,每個小正方形的邊長都為1,頂點都在網(wǎng)格線交點處的三角形, 是一個格點三角形.
在圖中,請判斷與是否相似,并說明理由;
在圖中,以O為位似中心,再畫一個格點三角形,使它與的位似比為2:1
在圖中,請畫出所有滿足條件的格點三角形,它與相似,且有一條公共邊和一個公共角.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在我校舉行的小科技創(chuàng)新發(fā)明比賽中,共有60人獲獎,組委會原計劃按照一等獎5人,二等獎15人,三等獎40人進行獎勵.后來經(jīng)學校研究決定,在該項獎勵總獎金不變的情況下,各等級獲獎人數(shù)實際調(diào)整為:一等獎10人,二等獎20人,三等獎30人,調(diào)整后一等獎每人獎金降低80元,二等獎每人獎金降低50元,三等獎每人獎金降低30元,調(diào)整前二等獎每人獎金比三等獎每人獎金多70元,則調(diào)整后一等獎每人獎金比二等獎每人獎金多____元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,AB=AC,AB的垂直平分線DE交AB、AC于點E、D,若△ABC和△BCD的周長分別為21cm和13cm,求△ABC的各邊長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt中,,AB=BC,F為AB上一點,連接CF,過B作BH⊥CF于G,交AC于H.
(1)如圖1,延長GH到點E,使GE=GC,連接AE,求的度數(shù);
(2)如圖2,若F為AB中點,連接FH,請?zhí)骄?/span>BH、FH、CF的數(shù)量關系,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com