【題目】如左圖,某小區(qū)的平面圖是一個(gè)400×300平方米的矩形,正中央的建筑區(qū)是與整個(gè)小區(qū)長寬比例相同的矩形.如果要使四周的空地所占面積是小區(qū)面積的36%,并且南北空地與東西空地的寬度各自相同.
(1)求該小區(qū)南北空地的寬度;
(2)如右圖,該小區(qū)在東西南三塊空地上做如圖所示的矩形綠化帶,綠化帶與建筑區(qū)之間為小區(qū)道路,小區(qū)道路寬度一致.已知東西側(cè)綠化帶完全相同,其長約為200米,南側(cè)綠化帶的長為300米,綠化面積為18000平方米,請(qǐng)求出小區(qū)道路的寬度.
【答案】(1)30米;(2)10米
【解析】試題分析:(1)根據(jù)已知得出正中央的建筑區(qū)以及四周的空地所占面積,進(jìn)而假設(shè)正中央的建筑區(qū)的長度為米,則寬為米,據(jù)此列出方程,求出即可;
(2)設(shè)小區(qū)道路的寬度為,則300(建筑區(qū)南側(cè)空地的寬度- )+2×200(建筑區(qū)西側(cè)空地的寬度- )=18000.
試題解析::(1)設(shè)建筑區(qū)的長為米,則建筑區(qū)的長為米,那么
,
解得 (不合題意舍去).
∴.
答:南北的空地寬30米.
(2)設(shè)小區(qū)道路的寬度為米,那么
.
.
解得.
答:小區(qū)道路的寬度為10米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一天,小明和小紅玩紙片拼圖游戲.發(fā)現(xiàn)利用圖①中的三種材料各若干可以拼出一些圖形來解釋某些等式,比如圖②可以解釋為:(a+2b)(a+b)=a2+3ab+2b2.
(1)圖③可以解釋為等式: .
(2)圖④中陰影部分的面積為 .觀察圖④請(qǐng)你寫出(a+b)2、(a﹣b)2、ab之間的等量關(guān)系是 .
(3)如圖⑤,小明利用7個(gè)長為b,寬為a的長方形拼成如圖所示的大長方形;若AB=4,若長方形AGMB的面積與長方形EDHN的面積的差為S,試計(jì)算S的值(用含a,b的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.
(1)觀察猜想
如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),
①BC與CF的位置關(guān)系為: .
②BC,CD,CF之間的數(shù)量關(guān)系為: ;(將結(jié)論直接寫在橫線上)
(2)數(shù)學(xué)思考
如圖2,當(dāng)點(diǎn)D在線段CB的延長線上時(shí),結(jié)論①,②是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫出正確結(jié)論再給予證明.
(3)拓展延伸
如圖3,當(dāng)點(diǎn)D在線段BC的延長線上時(shí),延長BA交CF于點(diǎn)G,連接GE.若已知AB=2,CD=BC,請(qǐng)求出GE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC內(nèi)接于⊙O,過點(diǎn)A作直線EF.
(1)如圖①所示,若AB為⊙O的直徑,要使EF成為⊙O的切線,還需要添加的一個(gè)條件是(至少說出兩種): 或者 .
(2)如圖②所示,如果AB是不過圓心O的弦,且∠CAE=∠B,那么EF是⊙O的切線嗎?試證明你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)為(1,3),請(qǐng)解答下列問題:
(1)畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1,并寫出點(diǎn)B1的坐標(biāo);
(2)畫出△ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到的△A2B2C2,并寫出點(diǎn)C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:①在直角三角形ABC中,已知兩邊長為3和4,則第三邊長為5;②三角形的三邊a、b、c滿足a2+c2=b2,則∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,則△ABC是直角三角形;④△ABC中,若a:b:c=1:2:,則這個(gè)三角形是直角三角形,其中,正確命題為_____(選填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近幾年來,國家對(duì)購買新能源汽車實(shí)行補(bǔ)助政策,2016年某省對(duì)新能源汽車中的“插電式混合動(dòng)力汽車”(用D表示)實(shí)行每輛3萬元的補(bǔ)助,小劉對(duì)該省2016年上半年“純電動(dòng)乘用車”(有三種類型分別用A、B、C表示)和“插電式混合動(dòng)力汽車”的銷售計(jì)劃進(jìn)行了研究,繪制出如圖所示的兩幅不完整的統(tǒng)計(jì)圖.
(1)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求出“D”所在扇形的圓心角的度數(shù);
(3)為進(jìn)一步落實(shí)該政策,該省計(jì)劃再補(bǔ)助4.5千萬元用于推廣上述兩大類產(chǎn)品,請(qǐng)你預(yù)測,該省16年計(jì)劃大約共銷售“插電式混合動(dòng)力汽車”多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以點(diǎn)O為圓心的三個(gè)同心圓把以O(shè)A1為半徑的大圓的面積四等分,若OA1=R,則OA4:OA3:OA2:OA1=______________,若有()個(gè)同心圓把這個(gè)大圓等分,則最小的圓的半徑是=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某小區(qū)規(guī)劃在一個(gè)長34m、寬22m的矩形ABCD上,修建三條同樣寬的通道,使其中兩條與AB平行,另一條與AD平行,其余部分種花草.要使每一塊花草的面積都為100m2,那么通道的寬應(yīng)設(shè)計(jì)成____m.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com