如圖,⊙O1、⊙O2的半徑均為2cm,⊙O3、⊙O4的半徑均為1cm,⊙O的半徑為3cm,⊙O與其他四個圓均相外切,圖形既關(guān)于O1O2所在直線對稱,又關(guān)于O3O4所在直線對稱,則四邊形O1O4O2O3的面積為( 。
分析:連接O1O2,O3O4,由于圖形既關(guān)于O1O2所在直線對稱,又因為關(guān)于O3O4所在直線對稱,故O1O2⊥O3O4,O、O1、O2共線,O、O3、O4共線,所以四邊形O1O4O2O3的面積為
1
2
O1O2×O3O4
解答:解:連接O1O2,O3O4,
∵圖形既關(guān)于O1O2所在直線對稱,又關(guān)于O3O4所在直線對稱,
∴O1O2⊥O3O4,O、O1、O2共線,O、O3、O4共線,
∵⊙O1,⊙O2的半徑均為2cm,⊙O3,⊙O4的半徑均為1cm,⊙O半徑均為3cm,
∴⊙O的直徑為6cm,⊙O3的直徑為2cm,
∴O1O2=4+6=10(cm),O3O4=6+2=8(cm),
∴S四邊形O1O4O2O3=
1
2
O1O2×O3O4=
1
2
×10×8=40(cm2).
故選:B.
點評:本題考查的是相切兩圓的性質(zhì),根據(jù)題意得出O1O2⊥O3O4,O、O1、O2共線,O、O3、O4共線是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O1與⊙O2外切于點P,外公切線AB切⊙O1于點A,切⊙O2于點B,
(1)求證:AP⊥BP;
(2)若⊙O1與⊙O2的半徑分別為r和R,求證:
AP2
BP2
=
r
R
;
(3)延長AP交⊙O2于C,連接BC,若r:R=2:3,求tan∠C的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O1、⊙O2相交于點A、B,現(xiàn)給出4個命題:
(1)若AC是⊙O2的切線且交⊙O1于點C,AD是⊙O1的切線且交⊙O2于點D,則AB2=BC•BD;
(2)連接AB、O1O2,若O1A=15cm,O2A=20cm,AB=24cm,則O1O2=25cm;
(3)若CA是⊙O1的直徑,DA是⊙O2的一條非直徑的弦,且點D、B不重合,則C、B、D三點不在同一條直線上;
(4)若過點A作⊙O1的切線交⊙O2于點D,直線DB交⊙O1于點C,直線CA交⊙O2于點E,連接DE,則DE2=DB•DC.
則正確命題的序號是
 
.(在橫線上填上所有正確命題的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O1,⊙O2,⊙O3,⊙O4,⊙O的半徑均為2cm,⊙O與⊙O1,⊙O3相外切,⊙O與⊙O2,⊙O4相外切,并且圓心分別位于兩條互相垂直的直線L1,L2上,連接O1,O2,O3,O4得四邊形O1O2O3O4,則圖中陰影部分的面積為
 
cm2.(π≈3.14)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,⊙O1和⊙O2相交于A、B兩點,經(jīng)過A的直線CD與⊙O1交于點C、與⊙O2交于點D,經(jīng)過點B的直線EF與⊙O1交于點E、與⊙O2交于點F,連接CE、DF.若∠AO1E=100°,則∠D的度數(shù)為
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1998•南京)如圖,⊙O1和⊙O2內(nèi)切于點P,⊙O2的弦AB經(jīng)過⊙O1的圓心O1,交⊙O1于點C、D,若AC:CD:BD=3:4:2,則⊙O1與⊙O2的直徑之比為( 。

查看答案和解析>>

同步練習(xí)冊答案