分析 由HL證明Rt△BDF≌Rt△ADC,得出BD=AD=4,再由勾股定理求出AB即可.
解答 解:∵AD⊥BC,∴∠BDF=∠ADC=90°,
在Rt△BDF和Rt△ADC中,$\left\{\begin{array}{l}{BF=AC}\\{FD=CD}\end{array}\right.$,
∴Rt△BDF≌Rt△ADC(HL),
∴BD=AD=4,
∴AB=$\sqrt{A{D}^{2}+B{D}^{2}}$=$\sqrt{{4}^{2}+{4}^{2}}$=4$\sqrt{2}$.
點評 本題考查了全等三角形的判定與性質;熟記斜邊和一條直角邊對應相等的兩個直角三角形全等是解決問題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | (m-2n)(m-n)=m2-3mn+2n2 | B. | (m+1)2=m2-1 | ||
C. | -m(m2-m-1)=-m3+m2-m | D. | (m+n)(m2+mn+n2)=m3+n2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com