如圖,關(guān)于射線OA所指方向描述正確的是( 。
分析:根據(jù)方位角的概念,確定射線OA表示的方位角即可.
解答:解:根據(jù)方位角的概念,射線OA表示的方向是北偏西65°或西偏北25°.
故選B.
點評:本題考查了方位角的概念及表示方法,方位角是表示方向的角;以正北,正南方向為基準(zhǔn),來描述物體所處的方向.用方位角描述方向時,通常以正北或正南方向為角的始邊,以對象所處的射線為終邊,故描述方位角時,一般先敘述北或南,再敘述偏東或偏西,偏多少度.(注意幾個方向的角平分線按日常習(xí)慣,即東北,東南,西北,西南.)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知直角梯形紙片OABC在平面直角坐標(biāo)系中的位置如圖所示,四個頂點的坐標(biāo)分別為O(0,0),A(10,0),B(8,2
3
),C(0,2
3
),點T在線段OA上(不與線段端點重合),將紙片折疊,使點A落在射線AB上(記為點A′),折痕經(jīng)過點T,折痕TP與射線AB交于點P,設(shè)點T的橫坐標(biāo)為t,折疊后紙片重疊部分(圖中的陰影部分)的面積為S.
(1)求∠OAB的度數(shù),并求當(dāng)點A′在線段AB上時,S關(guān)于t的函數(shù)關(guān)系式;
(2)當(dāng)紙片重疊部分的圖形是四邊形時,求t的取值范圍;
(3)S存在最大值嗎?若存在,求出這個最大值,并求此時t的值;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直角梯形紙片OABC在平面直角坐標(biāo)系中的位置如圖1所示,四個頂點的坐標(biāo)分別為O(0,0),A(10,0),B(8,2
3
),C(0,2
3
),點T在線段OA上(不與線段點重合),將紙片沿過T點的直線折疊,使點A落在射線AB上(記為點A'),折痕TP與射線AB交于點P,設(shè)點T的橫坐標(biāo)為t,折疊后紙片重疊部分(圖2中的陰影部分)的面積為S;
(1)直接寫出∠OAB的度數(shù);
(2)當(dāng)紙片重疊部分的圖形是四邊形時,直接寫出t的取值范圍;
(3)求S關(guān)于t的解析式及S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,點A,B的坐標(biāo)分別為(28,0)和(0,28),動點P從點A出發(fā)沿射線AO方向以每秒3個單位的速度運動,同時,動點E從點O出發(fā)沿OB方向以每秒1個單位的速度向終點B運動,EF∥x軸交AB于F,連接FP,當(dāng)點E到達點B時,點P隨之停止運動.設(shè)運動時間為t秒.
(1)用含t的代數(shù)式表示EF的長度;
(2)當(dāng)點P在線段OA上(不包括O,A)運動時,記梯形OPFE的面積為S,求S關(guān)于t的函數(shù)關(guān)系式,并求出當(dāng)t為何值時,S最大,最大值是多少?
(3)是否存在點P,使△EFP為等腰三角形?若存在,請求出所有滿足要求的點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直角梯形紙片OABC在平面直角坐標(biāo)系中的位置如圖所示,四個頂點的坐標(biāo)分別為O(0,0),A(10,0),B(8,),C(0,),點T在線段OA上(不與線段端點重合),將紙片沿過T點的直線折疊,使點A落在射線AB上(記為點A′),折痕TP與射線AB交于點P,設(shè)點T的橫坐標(biāo)為t,折疊后紙片重疊部分(圖中的陰影部分)的面積為S;

【小題1】(1)直接寫出∠OAB的度數(shù);
【小題2】(2)當(dāng)紙片重疊部分的圖形是四邊形時,直接寫出t的取值范圍;
【小題3】(3)求S關(guān)于t的解析式及S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年北京市三帆中學(xué)九年級上學(xué)期期中測試數(shù)學(xué)卷 題型:解答題

已知直角梯形紙片OABC在平面直角坐標(biāo)系中的位置如圖所示,四個頂點的坐標(biāo)分別為O(0,0),A(10,0),B(8,),C(0,),點T在線段OA上(不與線段端點重合),將紙片沿過T點的直線折疊,使點A落在射線AB上(記為點A′),折痕TP與射線AB交于點P,設(shè)點T的橫坐標(biāo)為t,折疊后紙片重疊部分(圖中的陰影部分)的面積為S;

【小題1】(1)直接寫出∠OAB的度數(shù);
【小題2】(2)當(dāng)紙片重疊部分的圖形是四邊形時,直接寫出t的取值范圍;
【小題3】(3)求S關(guān)于t的解析式及S的最大值.

查看答案和解析>>

同步練習(xí)冊答案