某公司經(jīng)銷一種綠茶,每千克成本為50元.市場(chǎng)調(diào)查發(fā)現(xiàn),在一段時(shí)間內(nèi),銷售量w(千克)隨銷售單價(jià)x(元/千克)的變化而變化,具體關(guān)系式為:w=-2x+240.設(shè)這種綠茶在這段時(shí)間內(nèi)的銷售利潤(rùn)為y(元),解答下列問(wèn)題:
(1)求y與x的關(guān)系式;
(2)當(dāng)x取何值時(shí),y的值最大?
(3)如果物價(jià)部門(mén)規(guī)定這種綠茶的銷售單價(jià)不得高于90元/千克,公司想要在這段時(shí)間內(nèi)獲得2250元的銷售利潤(rùn),銷售單價(jià)應(yīng)定為多少元?
(1)y與x的關(guān)系式為:y=-2x2+340x-12000 (2)當(dāng)x=85時(shí),y的值最大 (3)當(dāng)銷售單價(jià)為75元時(shí),可獲得銷售利潤(rùn)2250元.   

試題分析:(1)y=(x-50)? w
=(x-50) ? (-2x+240)
=-2x2+340x-12000,
∴y與x的關(guān)系式為:y=-2x2+340x-12000. 
(2)y=-2x2+340x-12000=-2 (x-85) 2+2450,
∴當(dāng)x=85時(shí),y的值最大.       
(3)當(dāng)y=2250時(shí),可得方程。2 (x-85 )2 +2450=2250.
解這個(gè)方程,得  x1=75,x2=95.         
根據(jù)題意,x2=95不合題意應(yīng)舍去.
∴當(dāng)銷售單價(jià)為75元時(shí),可獲得銷售利潤(rùn)2250元.   
點(diǎn)評(píng):本題考查二次函數(shù),一元二次方程,解答本題需要掌握求二次函數(shù)解析式,以及一元二次方程的解法,會(huì)正確求一元二次方程的解
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線(a≠0)經(jīng)過(guò)點(diǎn)A(﹣3,0)、B(1,0)、C(﹣2,1),交y軸于點(diǎn)M.

(1)求拋物線的表達(dá)式;
(2)D為拋物線在第二象限部分上的一點(diǎn),作DE垂直x軸于點(diǎn)E,交線段AM于點(diǎn)F,求線段DF長(zhǎng)度的最大值,并求此時(shí)點(diǎn)D的坐標(biāo);
(3)拋物線上是否存在一點(diǎn)P,作PN垂直x軸于點(diǎn)N,使得以點(diǎn)P、A、N為頂點(diǎn)的三角形與△MAO相似?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某公司營(yíng)銷A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)研,發(fā)現(xiàn)如下信息:
信息1:銷售A種產(chǎn)品所獲利潤(rùn)y(萬(wàn)元)與所售產(chǎn)品x(噸)之間存在二次函數(shù)關(guān)系
當(dāng)x=1時(shí),y=1.4;當(dāng)x=3時(shí),y=3.6。
信息2:銷售B種產(chǎn)品所獲利潤(rùn)y(萬(wàn)元)與所售產(chǎn)品x(噸)之間存在正比例函數(shù)關(guān)系
根據(jù)以上信息,解答下列問(wèn)題:
(1)求二次函數(shù)解析式;
(2)該公司準(zhǔn)備購(gòu)進(jìn)A,B兩種產(chǎn)品共10噸,請(qǐng)?jiān)O(shè)計(jì)一個(gè)營(yíng)銷方案,使銷售A,B兩種產(chǎn)品獲得的利潤(rùn)之和最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角坐標(biāo)平面xOy中,拋物線C1的頂點(diǎn)為A(-1,4),且過(guò)點(diǎn)B(-3,0)

(1)寫(xiě)出拋物線C1與x軸的另一個(gè)交點(diǎn)M的坐標(biāo);
(2)將拋物線C1向右平移2個(gè)單位得拋物線C2,求拋物線C2的解析式;
(3)寫(xiě)出陰影部分的面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1所示,已知直線與x軸、y軸分別交于A、C兩點(diǎn),拋物線經(jīng)過(guò)A、C兩點(diǎn),點(diǎn)B是拋物線與x軸的另一個(gè)交點(diǎn),當(dāng)時(shí),y取最大值.

(1)求拋物線和直線的解析式;
(2)設(shè)點(diǎn)P是直線AC上一點(diǎn),且,求點(diǎn)P的坐標(biāo);
(3)若直線與(1)中所求的拋物線交于M、N兩點(diǎn),問(wèn):
①是否存在a的值,使得∠MON=900?若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由;
②猜想當(dāng)∠MON>900時(shí),a的取值范圍(不寫(xiě)過(guò)程,直接寫(xiě)結(jié)論).
(參考公式:在平面直角坐標(biāo)系中,若M(x1,y1),N(x2,y2),則M,N兩點(diǎn)間的距離為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù) (a、m為常數(shù),且a¹0)。
(1)求證:不論a與m為何值,該函數(shù)的圖像與x軸總有兩個(gè)公共點(diǎn);
(2)設(shè)該函數(shù)的圖像的頂點(diǎn)為C,與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)D。
①當(dāng)△ABC的面積等于1時(shí),求a的值:
②當(dāng)△ABC的面積與△ABD的面積相等時(shí),求m的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某中學(xué)課外活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形生物苗圃園,其中一邊靠墻,另外三邊用長(zhǎng)為50米的籬笆圍成。已知墻長(zhǎng)為26米(如圖所示),設(shè)這個(gè)苗圃園平行于墻的一邊的長(zhǎng)為米。(1)若垂直于墻的一邊長(zhǎng)為米,直接寫(xiě)出的函數(shù)關(guān)系式及其自變量的取值范圍;(2)當(dāng)為多少米時(shí),這個(gè)苗圃園的面積最大,并求出這個(gè)最大值;(3)當(dāng)這個(gè)苗圃園的面積不小于300平方米時(shí),試結(jié)合函數(shù)圖象,求出的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

將矩形OABC置于平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)C的坐標(biāo)為(m,0)(m>0),點(diǎn)D(m,1)在BC上,將矩形OABC沿AD折疊壓平,使點(diǎn)B落在坐標(biāo)平面內(nèi),設(shè)點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)E.

(1)當(dāng)m=3時(shí),點(diǎn)B的坐標(biāo)為       ,點(diǎn)E的坐標(biāo)為         ;
(2)隨著m的變化,試探索:點(diǎn)E能否恰好落在x軸上?若能,請(qǐng)求出m的值;若不能,請(qǐng)說(shuō)明理由.
(3)如圖,若點(diǎn)E的縱坐標(biāo)為-1,拋物線(a≠0且a為常數(shù))的頂點(diǎn)落在△ADE的內(nèi)部,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

二次函數(shù)y=x2﹣4x+5的最小值是
A.﹣1B.1C.3D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案