方程:4x+5=4x+4的解是

[    ]

A.0   B.無數(shù)多個(gè)解   C.無解   D.1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

方程mx2+4x+2=0有兩個(gè)實(shí)根x1,x2,則實(shí)數(shù)m的取值范圍是
m≤2
m≤2
;x1+x2=
-
4
m
-
4
m
;拋物線y=mx2+4x+2的圖象全在x軸上方,且與x軸沒有公共點(diǎn),則m的取值范圍是
m>2
m>2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料:
如果x1,x2是一元二次方程ax2+bx+c=0的兩根,那么有x1+x2=-
b
a
,x1x2=
c
a

這是一元二次方程根與系數(shù)的關(guān)系,我們利用它可以用來解題:
設(shè)x1,x2是方程x2+6x-3=0的兩根,求x
 
2
1
+x
 
2
2
的值.
解法可以這樣:∵x1+x2=-6,x1x2=-3,則x
 
2
1
+x
 
2
2
=(x1+x22-2x1x2=(-6)2-2×(-3)=42.
請(qǐng)你根據(jù)以上解法解答下題:
已知x1,x2是方程x2-4x+2=0的兩根,求:
(1)
1
x1
+
1
x2
的值;
(2)(x1-x22的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料:設(shè)一元二次方程ax2+bx+c=0的兩根為x1,x2,則兩根與方程系數(shù)之間有如下關(guān)系:x1+x2=-
b
a
,x1•x2=
c
a
.根據(jù)閱讀材料:解決以下問題:
(1)已知x1,x2是方程x2+4x-3=0的兩實(shí)數(shù)根,則x1+x2=
-4
-4
,x1•x2=
-3
-3

(2)已知x1,x2是方程x2+6x+3=0的兩實(shí)數(shù)根,不解方程,試求
1
x1
+
1
x2
的值;
(3)已知x1,x2是方程x2-6x-5=0的兩實(shí)數(shù)根,不解方程,試求
x2
x1
+
x1
x2
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小明和小彬每天堅(jiān)持跑步,小明每秒跑6米,小彬每秒跑4米,如果他們同時(shí)從相距2000米的兩地相向起跑,那么幾秒后兩人相遇?若設(shè)x秒后兩人相遇,可列方程
6x+4x=200
6x+4x=200

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

先閱讀短文,再回答短文后面的問題.
平面內(nèi)與一個(gè)定點(diǎn)F和一條定直線l的距離相等的點(diǎn)的軌跡叫做拋物線,點(diǎn)F叫做拋物線的焦點(diǎn),直線l叫做拋物線的準(zhǔn)線.
下面根據(jù)拋物線的定義,我們來求拋物線的方程.
如上圖,建立直角坐標(biāo)系xoy,使x軸經(jīng)過點(diǎn)F且垂直于直線l,垂足為K,并使原點(diǎn)與線段KF的中點(diǎn)重合.設(shè)|KF|=p(p>0),那么焦點(diǎn)F的坐標(biāo)為(數(shù)學(xué)公式,0),準(zhǔn)線l的方程為x=-數(shù)學(xué)公式
設(shè)點(diǎn)M(x,y)是拋物線上任意一點(diǎn),點(diǎn)M到l的距離為d,由拋物線的定義,拋物線就是滿足|MF|=d的點(diǎn)M的軌跡.
∵|MF|=數(shù)學(xué)公式,d=|x+數(shù)學(xué)公式|∴數(shù)學(xué)公式=|x+數(shù)學(xué)公式|
將上式兩邊平方并化簡,得y2=2px(p>0)①
方程①叫做拋物線的標(biāo)準(zhǔn)方程,它表示的拋物線的焦點(diǎn)在x軸的正半軸上,坐標(biāo)是(數(shù)學(xué)公式,0),它的準(zhǔn)線方程是x=-數(shù)學(xué)公式
一條拋物線,由于它在坐標(biāo)平面內(nèi)的位置不同,方程也不同.所以拋物線的標(biāo)準(zhǔn)方程還有其它的幾種形式:y2=-2px,x2=2py,x2=-2py.這四種拋物線的標(biāo)準(zhǔn)方程,焦點(diǎn)坐標(biāo)以及準(zhǔn)線方程列表如下:
標(biāo)準(zhǔn)方程 交點(diǎn)坐標(biāo) 準(zhǔn)線方程
y2=2px(p>0)數(shù)學(xué)公式 x=-數(shù)學(xué)公式
y2=-2px(p>0) (-數(shù)學(xué)公式 x=數(shù)學(xué)公式
x2=2py(p>0) (0,數(shù)學(xué)公式 y=-數(shù)學(xué)公式
x2=-2py(p>0) (0,-數(shù)學(xué)公式 y=-數(shù)學(xué)公式
解答下列問題:
(1)①已知拋物線的標(biāo)準(zhǔn)方程是y2=8x,則它的焦點(diǎn)坐標(biāo)是______,準(zhǔn)線方程是______
②已知拋物線的焦點(diǎn)坐標(biāo)是F(0,-6),則它的標(biāo)準(zhǔn)方程是______.
(2)點(diǎn)M與點(diǎn)F(4,0)的距離比它到直線l:x+5=0的距離小1,求點(diǎn)M的軌跡方程.
(3)直線數(shù)學(xué)公式經(jīng)過拋物線y2=4x的焦點(diǎn),與拋物線相交于兩點(diǎn)A、B,求線段AB的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案