在Rt△ABC中,∠ACB=90°,BD是⊙O的直徑,弦DE與AC交于點(diǎn)E,且BD=BF.
(1)求證:AC是⊙O的切線;
(2)若BC=6,AD=4,求⊙O的面積.

(1)證明:連接OE,
∵BD=BF,
∴∠BDF=∠F,
∵OD=OE,
∴∠BDF=∠OED,
∴∠ODE=∠F,
∴OE∥BC,
∵在Rt△ABC中,∠ACB=90°,
∴∠OEA=90°,
即OE⊥AC,
∴AC是⊙O的切線;

(2)設(shè)半徑為x,
∵OE∥BC,
∴△AOE∽△ABC,
,
∵BC=6,AD=4,
∴AO=4+x,AB=4+2x,
,
解得:x=4或x=-3(舍去).
∴⊙O的面積為:16π.
分析:(1)連接OE,由OD=OE,BD=BF,易證得∠OED=∠F,即可得OE∥BC,又由在Rt△ABC中,∠ACB=90°,即可得AC是⊙O的切線;
(2)首先設(shè)半徑為x,易得△AOE∽△ABC,由相似三角形的對(duì)應(yīng)邊成比例,即可求得半徑,繼而求得答案.
點(diǎn)評(píng):此題考查了切線的判定、相似三角形的判定與性質(zhì)以及等腰三角形的性質(zhì).此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想與方程思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一點(diǎn),以BD為直徑的⊙O切AC于E,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠C=90°,AB=12,點(diǎn)D是AB的中點(diǎn),點(diǎn)O是△ABC的重心,則OD的長(zhǎng)為( 。
A、12B、6C、2D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,已知a及∠A,則斜邊應(yīng)為(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求畫出圖形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,則AC:BC的值為( 。
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步練習(xí)冊(cè)答案