(2008•宜昌)如圖,某種雨傘的傘面可以看成由12塊完全相同的等腰三角形布料縫合而成,量得其中一個三角形OAB的邊OA=OB=56cm.
(1)求∠AOB的度數(shù);
(2)求△OAB的面積.(不計縫合時重疊部分的面積)

【答案】分析:(1)∠AOB的度數(shù)為扇形的圓心角,則∠AOB=
(2)作輔助線,過點B作BD⊥OA于點D,在Rt△BOD中,由(1)知∠AOB的度數(shù),又知OB的長,運用三角函數(shù)可將高BD求出,代入S△OAB=OA×BD進行求解即可.
解答:解:(1)由條件可知:∠AOB=360°÷12=30°;

(2)過點B作BD⊥OA于點D,在Rt△BDO中,∠AOB=30°,OB=56,
∴DB=BOsin30°=56×=28,
∴△OAB的面積=×OA×BD=784(cm2).
點評:本題主要考查圓的性質和運用三角函數(shù)解直角三角形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2008•宜昌)如圖1,已知四邊形OABC中的三個頂點坐標為O(0,0),A(0,n),C(m,0).動點P從點O出發(fā)依次沿線段OA,AB,BC向點C移動,設移動路程為z,△OPC的面積S隨著z的變化而變化的圖象如圖2所示.m,n是常數(shù),m>1,n>0.
(1)請你確定n的值和點B的坐標;
(2)當動點P是經(jīng)過點O,C的拋物線y=ax2+bx+c的頂點,且在雙曲線y=上時,求這時四邊形OABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣東省廣州市廣雅實驗中學中考數(shù)學一模試卷(解析版) 題型:解答題

(2008•宜昌)如圖1,已知四邊形OABC中的三個頂點坐標為O(0,0),A(0,n),C(m,0).動點P從點O出發(fā)依次沿線段OA,AB,BC向點C移動,設移動路程為z,△OPC的面積S隨著z的變化而變化的圖象如圖2所示.m,n是常數(shù),m>1,n>0.
(1)請你確定n的值和點B的坐標;
(2)當動點P是經(jīng)過點O,C的拋物線y=ax2+bx+c的頂點,且在雙曲線y=上時,求這時四邊形OABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年湖北省宜昌市中考數(shù)學試卷(解析版) 題型:解答題

(2008•宜昌)如圖1,已知四邊形OABC中的三個頂點坐標為O(0,0),A(0,n),C(m,0).動點P從點O出發(fā)依次沿線段OA,AB,BC向點C移動,設移動路程為z,△OPC的面積S隨著z的變化而變化的圖象如圖2所示.m,n是常數(shù),m>1,n>0.
(1)請你確定n的值和點B的坐標;
(2)當動點P是經(jīng)過點O,C的拋物線y=ax2+bx+c的頂點,且在雙曲線y=上時,求這時四邊形OABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(08)(解析版) 題型:解答題

(2008•宜昌)如圖1,草原上有A,B,C三個互通公路的奶牛養(yǎng)殖基地,B與C之間距離為100千米,C在B的正北方,A在C的南偏東47°方向且在B的北偏東43°方向.A地每年產(chǎn)奶3萬噸;B地有奶牛9 000頭,平均每頭牛的年產(chǎn)奶量為3噸;C地養(yǎng)了三種奶牛,其中黑白花牛的頭數(shù)占20%,三河牛的頭數(shù)占35%,其他情況反映在圖2,圖3中.
(1)通過計算補全圖3;
(2)比較B地與C地中,哪一地平均每頭牛的年產(chǎn)奶量更高?
(3)如果從B,C兩地中選擇一處建設一座工廠解決三個基地的牛奶加工問題,當運送一噸牛奶每千米的費用都為1元(即1元/噸•千米時),那么從節(jié)省運費的角度考慮,應在何處建設工廠?

查看答案和解析>>

科目:初中數(shù)學 來源:2008年湖北省宜昌市中考數(shù)學試卷(解析版) 題型:選擇題

(2008•宜昌)如圖,已知△ABC的頂點B的坐標是(2,1),將△ABC向左平移兩個單位后,點B平移到B1,則B1的坐標是( )

A.(4,1)
B.(0,1)
C.(-1,1)
D.(1,0)

查看答案和解析>>

同步練習冊答案