【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(10,0),點(diǎn)B的坐標(biāo)為(8,0),點(diǎn)C、D在以OA為直徑的半圓M上,且四邊形OCDB是平行四邊形,OC長(zhǎng)為_____

【答案】

【解析】

過(guò)點(diǎn)MMFCDF,過(guò)CCEOAE,在RtCMF中,根據(jù)勾股定理即可求得MFEM,進(jìn)而就可求得OECE的長(zhǎng),然后利用勾股定理求得MF的長(zhǎng),再次利用勾股定理求得OC的長(zhǎng)即可.

解:∵四邊形OCDB是平行四邊形,點(diǎn)B的坐標(biāo)為(8,0),

CD//OA,CDOB8

過(guò)點(diǎn)MMFCDF,

CFCD4

過(guò)CCEOAE,

A10,0),

OA10,OM5,

OEOMMEOMCF541

連接MC,MCOA5

∴在RtCMF中,

MF3

CEMF3,

OC,

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:我們把對(duì)角線互相垂直的四邊形叫做神奇四邊形.順次連接四邊形各邊中點(diǎn)得到的四邊形叫做中點(diǎn)四邊形.

1)判斷:

①在平行四邊形、矩形、菱形中,一定是神奇四邊形的是 ;

②命題:如圖1,在四邊形中,則四邊形是神奇四邊形.此命題是_____(填“真”或“假”)命題;

③神奇四邊形的中點(diǎn)四邊形是

2)如圖2,分別以的直角邊和斜邊為邊向外作正方形和正方形,連接

①求證:四邊形是神奇四邊形;

②若,求的長(zhǎng);

3)如圖3,四邊形是神奇四邊形,若分別是方程的兩根,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB、AC分別為⊙O的直徑和弦,D為的中點(diǎn),DE⊥ACEDE=6,AC=16

1)求證:DE⊙O的切線.

2)求直徑AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線與直線都經(jīng)過(guò)兩點(diǎn),該拋物線的頂點(diǎn)為

1)求拋物線和直線的解析式;

2)設(shè)點(diǎn)是直線下方拋物線上的一動(dòng)點(diǎn),求面積的最大值,并求面積最大時(shí),點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示在矩形ABCD中,AB6AD3,點(diǎn)E、F分別是邊DC、DA的三等分點(diǎn)(DEEC,DFAF),四邊形DFGE為矩形,連接BG

1)問(wèn)題發(fā)現(xiàn):在圖(1)中,   ;

2)拓展探究:將圖(1)中的矩形DFGE繞點(diǎn)D旋轉(zhuǎn)一周,在旋轉(zhuǎn)過(guò)程中的大小有無(wú)變化?請(qǐng)僅就圖(2)的情形給出證明;

3)問(wèn)題解決:當(dāng)矩形DFGE旋轉(zhuǎn)至BG、E三點(diǎn)共線時(shí),請(qǐng)直接寫(xiě)出線段CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】按要求作圖,不要求寫(xiě)作法,但要保留作圖痕跡.

1)如圖1,A為圓E上一點(diǎn),請(qǐng)用直尺(不帶刻度)和圓規(guī)作出圓內(nèi)接正方形;

2)我們知道,三角形具有性質(zhì),三邊的垂直平分線相交于同一點(diǎn),三條角平分線相交于一點(diǎn),三條中線相交于一點(diǎn),事實(shí)上,三角形還具有性質(zhì):三條高交于同一點(diǎn),請(qǐng)運(yùn)用上述性質(zhì),只用直尺(不帶刻度)作圖:

①如圖2,在□ABCD中,ECD的中點(diǎn),作BC的中點(diǎn)F;

②圖3,在由小正方形組成的網(wǎng)格中,的頂點(diǎn)都在小正方形的頂點(diǎn)上,作ABC的高AH

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年豬肉價(jià)格受非洲豬瘟疫情影響,有較大幅度的上升,為了解某地區(qū)養(yǎng)殖戶(hù)受非洲豬瘟疫情感染受災(zāi)情況,現(xiàn)從該地區(qū)建檔的養(yǎng)殖戶(hù)中隨機(jī)抽取了部分養(yǎng)殖戶(hù)進(jìn)行了調(diào)查(把調(diào)查結(jié)果分為四個(gè)等級(jí):A級(jí):非常嚴(yán)重;B級(jí):嚴(yán)重;C級(jí):一般;D級(jí):沒(méi)有感染),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解決下列問(wèn)題:

1)本次抽樣調(diào)查的養(yǎng)殖戶(hù)的總戶(hù)數(shù)是   ;把圖2條形統(tǒng)計(jì)圖補(bǔ)充完整.

2)若該地區(qū)建檔的養(yǎng)殖戶(hù)有1500戶(hù),求非常嚴(yán)重與嚴(yán)重的養(yǎng)殖戶(hù)一共有多少戶(hù)?

3)某調(diào)研單位想從5戶(hù)建檔養(yǎng)殖戶(hù)(分別記為a,bc,d,e)中隨機(jī)選取兩戶(hù),進(jìn)一步跟蹤監(jiān)測(cè)病毒傳播情況,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求出選中養(yǎng)殖戶(hù)e的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)、是直線與反比例函數(shù)圖象的兩個(gè)交點(diǎn),軸于點(diǎn)C,己知點(diǎn)D0,1),連接AD、BD、BC,

1)求反比例函數(shù)和直線AB的表達(dá)式;

2)根據(jù)函數(shù)圖象直接寫(xiě)出當(dāng)時(shí)不等式的解集;

3)設(shè)△ABC和△ABD的面積分別為、,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與實(shí)踐

問(wèn)題情境:ABC中,∠BAC=90°AB=AC,ADBC于點(diǎn)D,點(diǎn)E是射線AD上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A重合)將線段AE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到線段AF,連接CF交線段AB于點(diǎn)G,交AD于點(diǎn)H、連接EG

特例分析:

(1)如圖1,當(dāng)點(diǎn)E與點(diǎn)D重合時(shí),“智敏”小組提出如下問(wèn)題,請(qǐng)你解答:

①求證:AF=CD;

②用等式表示線段CGEG之間的數(shù)量關(guān)系為:_______

拓展探究:

(2)如圖2,當(dāng)點(diǎn)E在線段AD的延長(zhǎng)線上,且DE=AD時(shí),“博!毙〗M發(fā)現(xiàn)CF=2EG.請(qǐng)你證明;

(3)如圖3,當(dāng)點(diǎn)E在線段AD的延長(zhǎng)線上,且AE=AB時(shí),的值為_______;

推廣應(yīng)用:

(4)當(dāng)點(diǎn)E在射線AD上運(yùn)動(dòng)時(shí),,則的值為______用含m.n的式子表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案