附加題:
探究題:我們知道等腰三角形的兩個底角相等,如下面每個圖中的△ABC中AB、BC是兩腰,所以∠BAC=∠BCA.利用這條性質(zhì),解決下面的問題:
已知下面的正多邊形中,相鄰四個頂點(diǎn)連接的對角線交于點(diǎn)O它們所夾的銳角為a.如圖:
 正五邊形α=
 
;    正六邊形α=
 
;    正八邊形α=
 
;
當(dāng)正多邊形的邊數(shù)是n時,α=
 
考點(diǎn):多邊形內(nèi)角與外角,等腰三角形的性質(zhì)
專題:
分析:對于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.通過分析找到各部分的變化規(guī)律后用一個統(tǒng)一的式子表示出變化規(guī)律是此類題目中的難點(diǎn).
解答:解:∵五邊形ABCDE是正五邊形,
∴AB=BC=AE,∠ABC=∠BAE=108°,
∴∠BEA=∠ACB=
180°-108°
2
=36°,
∴∠CAE=108°-36°=72°,
∴α5=180°-∠EAO-∠AOE=72°;
同理:α6=60°,α8=45°,
當(dāng)正多邊形的邊數(shù)是n時,α=
360°
n

故答案為:72°;  60°; 45°;α=
360°
n
點(diǎn)評:本題主要考查了正多邊形和圓的知識,學(xué)生通過特例分析從而歸納總結(jié)出一般結(jié)論的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在平面直角坐標(biāo)系中,點(diǎn)AB的坐標(biāo)分別為(-1,0),(3,0),現(xiàn)同時將點(diǎn)AB向上平移2個單位,再向右平移1個單位,得到點(diǎn)A,B的對應(yīng)點(diǎn)分別是C,D,連接AC,BDCD

(1)求點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABCD.  
(2)在y軸上是否存在點(diǎn)P,連接PA,PB,使S△PAB=S四邊形ABCD?若存在這樣的點(diǎn),求出點(diǎn)P的坐標(biāo);若不存在,試說明理由.(如圖2)
(3)點(diǎn)P是線段BD上的一個動點(diǎn),連接PC,PO,當(dāng)點(diǎn)PBD上移動時(不與B,D重合)給出下列結(jié)論:(如圖3).
∠DCP+∠CPO
∠BOP
的值不變;②
∠DCP+∠BOP
∠CPO
的值不變;③S△CPD+S△OPB的值可以等于
5
2
;④S△CPD+S△OPB的值可以等于
13
4

以上結(jié)論中正確的是:
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC在直角坐標(biāo)系中,
(1)請寫出△ABC各點(diǎn)的坐標(biāo).
(2)若把△ABC向上平移2個單位,再向左平移1個單位得到△A′B′C′,寫出 A′、B′、C′的坐標(biāo),并在圖中畫出平移后圖形.
(3)求出三角形ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=y1-y2,且y1與x+1的成反比例,y2與x2成正比例,且x=-2和x=1時,y的值都是1.求y關(guān)于x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某住宅小區(qū),為美化環(huán)境,提高居民生活質(zhì)量,要建一個八邊形居民廣場(平面圖如圖所示),其中,正方形MNPQ與四個相同矩形(圖中陰影部分)的面積的和為800m2
(1)設(shè)矩形的邊長AB=x(m),AM=y(m),用含x的代數(shù)式來表示y;
(2)現(xiàn)計(jì)劃在正方形區(qū)域上建雕塑和花壇,平均每平方米造價為2100元;在四個相同的矩形區(qū)域上鋪設(shè)花崗巖地坪,平均每平方米造價為105元;在四個三角形區(qū)域上鋪設(shè)草坪,平均每平方米造價為40元.
①設(shè)該工程的總造價為S(元),求S關(guān)于x的函數(shù)關(guān)系式.
②若該工程的銀行貸款為235000元,問僅靠銀行貸款能否完成該工程的建設(shè)任務(wù)?若能,請列出設(shè)計(jì)方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線AB∥MN∥CD,E,F(xiàn)為直線MN上的兩點(diǎn),BF平分∠ABE,DF平分∠CDE,∠BED=120°,求∠BFD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

閱讀下列材料:
小明遇到這樣一個問題:已知:在△ABC中,AB,BC,AC三邊的長分別為
5
、
10
13
,求△ABC的面積.
小明是這樣解決問題的:如圖1所示,先畫一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個頂點(diǎn)都在小正方形的頂點(diǎn)處),從而借助網(wǎng)格就能計(jì)算出△ABC的面積.他把這種解決問題的方法稱為構(gòu)圖法.

請回答:
(1)圖1中△ABC的面積為
 
;
參考小明解決問題的方法,完成下列問題:
(2)圖2是一個6×6的正方形網(wǎng)格(每個小正方形的邊長為1).
①利用構(gòu)圖法在答題卡的圖2中畫出三邊長分別為
13
、2
5
、
29
的格點(diǎn)△DEF;
②計(jì)算△DEF的面積為
 

(3)如圖3,已知△PQR,以PQ,PR為邊向外作正方形PQAF,PRDE,連接EF.若PQ=2
2
,PR=
13
,QR=
17
,則六邊形AQRDEF的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,E為BC邊上的一點(diǎn),連接AE,BD且AE=AB.
求證:∠ABE=∠EAD.

查看答案和解析>>

同步練習(xí)冊答案