【題目】如圖△ABC,AC=BC,∠ACB=90°,AD為角平分線,延長AD交BF于E,E為BF中點,下列結(jié)論錯誤的是(
A.AD=BF
B.CF=CD
C.AC+CD=AB
D.BE=CF

【答案】D
【解析】解:過點E作EH⊥AB于H,作EG⊥AF于G,則∠EHB=∠EGF=90°,
∵AD為角平分線,
∴EH=EG,
又∵E為BF中點,
∴EB=EF,
∴Rt△EHB≌Rt△EGF(HL),
∴∠BEH=∠FEG,
∵∠EAH=∠EAG,∠EHA=∠EGA,
∴∠AEH=∠AEG,
∴∠AEB=∠AEF=90°,即AE⊥BF,
又∵∠ACB=90°,∠ADC=∠BDE,
∴∠CAD=∠CBF,
在△ACD和△BCF中,
,
∴△ACD≌△BCF(ASA),
∴AD=BF,CD=CF,故A、B選項正確;
∴AC+CD=AC+CF=AF,
又∵AE垂直平分BF,
∴AF=AB,
∴AC+CD=AB,故C正確;
∵EF>CD,
∴BE>CF,故D錯誤.
故選:D.
【考點精析】解答此題的關(guān)鍵在于理解等腰直角三角形的相關(guān)知識,掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,∠ABD的平分線BE交AD于點E,∠CDB的平分線DF交BC于點F,連接BD.

(1)求證:△ABE≌△CDF;

(2)若AB=DB,求證:四邊形DFBE是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,過點A作⊙O的切線并在其上取一點C,連接OC交⊙O于點D,BD的延長線交AC于E,連接AD.

(1)求證:△CDE∽△CAD;

(2)若AB=2,AC=,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著移動終端設(shè)備的升級換代,手機已經(jīng)成為我們生活中不可缺少的一部分,為了解中學生在假期使用手機的情況(選項:A.和同學親友聊天;B.學習;C.購物;D.玩游戲;E.其它),端午節(jié)后某中學在全校范圍內(nèi)隨機抽取了若干名學生進行調(diào)査,得到如圖表(部分信息未給出):

選項

頻數(shù)

百分比

A

10

m

B

n

0.2

C

5

0.1

D

p

0.4

E

5

0.1

根據(jù)以上信息解答下列問題:
(1)這次被調(diào)查的學生有多少人?
(2)求表中m,n,p的值,并補全條形統(tǒng)計圖;
(3)若該中學約有2400名學生,估計全校學生中利用手機購物或玩游戲的共有多少人?并根據(jù)以上調(diào)査結(jié)果,就中學生如何合理使用手機給出你的一條建議.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABC=90°,BC=3,D為AC延長線上一點,AC=3CD,過點D作DHAB,交BC的延長線于點H.

(1)求BDcosHBD的值;

(2)若CBD=A,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【閱讀】
我們分析解決某些數(shù)學問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進行一定的轉(zhuǎn)化,
其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M﹣N,若M﹣N>0,則M>N;若M﹣N=0,則M=N;若M﹣N<0,則M<N.
【運用】
利用“作差法”解決下列問題:
(1)小麗和小穎分別兩次購買同一種商品,小麗兩次都買了m千克商品,小穎兩次購買商品均花費n元,已知第一次購買該商品的價格為a元/千克,第二次購買該商品的價格為b元/千克(a,b是整數(shù),且a≠b),試比較小麗和小穎兩次所購買商品的平均價格的高低.
(2)奶奶提一籃子玉米到集貿(mào)市場去兌換大米,每2kg玉米兌換1kg大米,商販用秤稱得連籃子帶玉米恰好20kg,于是商販連籃子帶大米給奶奶共10kg,在這個過程中誰吃了虧?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一個樣本-1,02,x3,它們的平均數(shù)是2,則這個樣本的方差s2 為(

A.5B.3C.4D.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合題:探索發(fā)現(xiàn)規(guī)律拓展應(yīng)用題
(1)如圖①,∠CEF=90°,點B在射線EF上,AB∥CD,若∠ABE=130°,求∠C的度數(shù);

(2)如圖②,把“∠CEF=90°”改為“∠CEF=120°”,點B在射線EF上,AB∥CD.猜想∠ABE與∠C的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列不等式的變形正確的是( )
A.若am>bm,則a>b
B.若am2>bm2 , 則a>b
C.若a>b,則am2>bm2
D.若a>b且ab>0,則

查看答案和解析>>

同步練習冊答案