3、已知M=-x2-4y2+2y,N=6x-2y+12,則M,N的大小關(guān)系是( 。
分析:比較M,N的大小關(guān)系,可通過計(jì)算M-N比較.
解答:解:∵M(jìn)=-x2-4y2+2y,N=6x-2y+12,
∴M-N=-x2-4y2+2y-6x+2y-12=-x2-6x-9-4y2+4y-1-2=-(x-3)2-(2y-1)2-2<0,
∴M<N.
故選D.
點(diǎn)評:此題主要考查完全平方公式,完全平方式是非負(fù)數(shù),是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

填空:
(1)已知(x2+y2+1)(x2+y2-3)=5,則x2+y2的值等于
 

(2)已知實(shí)數(shù)x、y滿足x2-2x+4y=5,則x+2y的最大值為
 

(3)設(shè)a2+b2=4ab且a≠b,則
a+ba-b
的值等于
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、已知:x2-2y=5,則代數(shù)式2x2-4y+3的值為
13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

【閱讀理解】問題:已知方程x2+2x-3=0,求一個一元二次方程,使它的根分別是已知方程根的2倍.
解:設(shè)所求方程的根為y,則y=2x,所以x=
y
2

把x=
y
2
代入已知方程,得(
y
2
2+2×
y
2
-3=0.
化簡得y2+4y-12=0.
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
【解決問題】請用閱讀材料提供的“換根法”求新方程(要求:把所求方程化為一般形式):
(1)已知方程x2+2x-3=0,求一個一元二次方程,使它的根分別是已知方程根的相反數(shù),則所求方程為
y2-2y-3=0
y2-2y-3=0
;
(2)已知關(guān)于x的方程x2+nx+m=0有兩個不等于零的實(shí)數(shù)根,求一個一元二次方程,使它的根分別是已知方程根的倒數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀與理解:
(1)先閱讀下面的解題過程:
分解因式:a2-6a+5
解:方法(1)原式=a2-a-5a+5
=(a2-a)+(-5a+5)
=a(a-1)-5(a-1)
=(a-1)(a-5)
方法(2)原式=a2-6a+9-4
=(a-3)2-22
=(a-3+2)(a-3-2)
=(a-1)(a-5)
再請你參考上面一種解法,對多項(xiàng)式x2+4x+3進(jìn)行因式分解;
(2)閱讀下面的解題過程:
已知m2+n2-4m+6n+13=0,試求m與n的值.
解:由已知得:m2-4m+4+n2+6n+9=0
因此得到:(m-2)2+(n+3)2=0
所以只有當(dāng)(m-n)=0并且(n+3)=0上式才能成立.
因而得:m=2 并且 n=-3
請你參考上面的解題方法解答下面的問題:
已知:x2+y2+2x-4y+5=0,試求xy的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知P=2x2+4y+13,Q=x2-y2+6x-1,則代數(shù)式P,Q的大小關(guān)系是(  )

查看答案和解析>>

同步練習(xí)冊答案