在平面直角坐標(biāo)系xOy中,矩形ABCO的面積為15,邊OA比OC大2,E為BC的中點(diǎn),以O(shè)E為直徑的⊙O′交x軸于D點(diǎn),過(guò)點(diǎn)D作DF⊥AE于F.
(1)求OA,OC的長(zhǎng); 
(2)求證:DF為⊙O′的切線(xiàn);
(3)由已知可得,△AOE是等腰三角形.那么在直線(xiàn)BC上是否存在除點(diǎn)E以外的點(diǎn)P,使△AOP也是等腰三角形?如果存在,請(qǐng)你證明點(diǎn)P與⊙O′的位置關(guān)系,如果不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)在矩形OABC中,利用邊長(zhǎng)之間的關(guān)系和面積公式即可求得OC,OA的長(zhǎng);
(2)連接O′D,通過(guò)證明△OCE≌△ABE得到DF⊥O′D,所以DF為⊙O′切線(xiàn);
(3)分兩種情況進(jìn)行分析:①當(dāng)AO=AP;②當(dāng)OA=OP,從而得到在直線(xiàn)BC上,除了E點(diǎn)外,既存在⊙O′內(nèi)的點(diǎn)P,又存在⊙O′外的點(diǎn)P2、P3、P4,它們分別使△AOP為等腰三角形.
解答:(1)解:在矩形OABC中,設(shè)OC=x,則OA=x+2
∴x(x+2)=15
∴x1=3,x2=-5
∵x2=-5(不合題意,舍去)
∴OC=3,OA=5;

(2)證明:連接O′D;
∵在矩形OABC中,OC=AB,∠OCB=∠ABC=90°,CE=BE=,
∴△0CE≌△ABE,
∴EA=EO,
∴∠EOA=∠EAO;
∵在⊙O′中,O′O=O′D,
∴∠O′OD=∠O′DO,
∴∠O′DO=∠EAO,
∴O′D∥AE;
∵DF⊥AE,
∴DF⊥O′D,
∵點(diǎn)D在⊙O′上,O′D為⊙O′的半徑,
∴DF為⊙O′切線(xiàn);

(3)解:存在,理由如下:
①當(dāng)A0=AP時(shí),以點(diǎn)A為圓心,以AO為半徑畫(huà)弧交BC于P1和P4兩點(diǎn)
過(guò)P1點(diǎn)作P1H⊥OA于點(diǎn)H,P1H=0C=3;
∵APl=OA=5,
∴AH=4,
∴OH=l,
求得點(diǎn)P1(1,3)同理可得:P4(9,3);
②當(dāng)OA=OP時(shí),
同上可求得P2(4,3),P3(-4,3),
∴在直線(xiàn)BC上,除了E點(diǎn)外,既存在⊙O′內(nèi)的點(diǎn)P,又存在⊙O′外的點(diǎn)P2、P3、P4,它們分別使△AOP為等腰三角形.
點(diǎn)評(píng):主要考查了矩形的性質(zhì)和圓中的有關(guān)性質(zhì),等腰三角形的判定以及一元二次方程在幾何圖形中的運(yùn)用.要熟練掌握這些性質(zhì)才能靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(2,-2),在y軸上確定點(diǎn)P,使△AOP為等腰三角形,則符合條件的有
4
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知拋物線(xiàn)y=ax2+bx+c的對(duì)稱(chēng)軸是x=1,并且經(jīng)過(guò)(-2,-5)和(5,-12)兩點(diǎn).
(1)求此拋物線(xiàn)的解析式;
(2)設(shè)此拋物線(xiàn)與x軸交于A(yíng)、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于C 點(diǎn),D是線(xiàn)段BC上一點(diǎn)(不與點(diǎn)B、C重合),若以B、O、D為頂點(diǎn)的三角形與△BAC相似,求點(diǎn)D的坐標(biāo);
(3)點(diǎn)P在y軸上,點(diǎn)M在此拋物線(xiàn)上,若要使以點(diǎn)P、M、A、B為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)你直接寫(xiě)出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,△ABC的A、B兩個(gè)頂點(diǎn)在x軸上,頂點(diǎn)C在y軸的負(fù)半軸上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面積S△ABC=15,拋物線(xiàn)y=ax2+bx+c(a≠0)經(jīng)過(guò)A、B、C三點(diǎn).
(1)求此拋物線(xiàn)的函數(shù)表達(dá)式;
(2)設(shè)E是y軸右側(cè)拋物線(xiàn)上異于點(diǎn)B的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的平行線(xiàn)交拋物線(xiàn)于另一點(diǎn)F,過(guò)點(diǎn)F作FG垂直于x軸于點(diǎn)G,再過(guò)點(diǎn)E作EH垂直于x軸于點(diǎn)H,得到矩形EFGH.則在點(diǎn)E的運(yùn)動(dòng)過(guò)程中,當(dāng)矩形EFGH為正方形時(shí),求出該正方形的邊長(zhǎng);
(3)在拋物線(xiàn)上是否存在異于B、C的點(diǎn)M,使△MBC中BC邊上的高為7
2
?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知A(2,-2),B(0,-2),在坐標(biāo)平面中確定點(diǎn)P,使△AOP與△AOB相似,則符合條件的點(diǎn)P共有
5
5
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,A(2,1)、B(4,1)、C(1,3).與△ABC與△ABD全等,則點(diǎn)D坐標(biāo)為
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案