如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上,點C的坐標(biāo)為(0,-1),
(1)寫出A、B兩點的坐標(biāo);
(2)畫出△ABC關(guān)于y軸對稱的△A1B1C1;
(3)畫出△ABC繞點C旋轉(zhuǎn)180°后得到的△A2B2C2

【答案】分析:(1)結(jié)合直角坐標(biāo)系可直接寫出A、B兩點的坐標(biāo).
(2)找到A、B、C三點關(guān)于y軸的對稱點,然后順次連接可得出△A1B1C1;
(3)旋轉(zhuǎn)180°也即是中心對稱,找到A、B、C三點關(guān)于C的中心對稱點,順次連接即可.
解答:解:(1)A(-1,2)B(-3,1);
(2)畫圖答案如圖所示:

(3)畫圖答案如圖所示:

點評:此題考查了旋轉(zhuǎn)作圖及中心對稱的知識,解答本題的關(guān)鍵是根據(jù)旋轉(zhuǎn)的三要素,中心對稱的性質(zhì),得到各點的對應(yīng)點,難度一般.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上,點C的坐標(biāo)為(2,-1).
(1)把△ABC先向上平移4個單位得△A1B1C1,再沿x軸翻折得△A2B2C2,請在網(wǎng)格中畫出△A2B2C2,并寫出C2的坐標(biāo).
(2)以原點為位似中心,在第二象限內(nèi)畫出△ABC的位似圖形△A3B3C3,且△A3B3C3與△ABC的相似比為2,并寫出C3的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,方格紙中的每個小方格都是邊長為1的正方形,我們把以格點間連續(xù)為邊的三角形稱為“格點三角形”,圖中的△ABC是格點三角形,在建立平面直角坐標(biāo)系后,點B的坐標(biāo)為(-1,-1)把△ABC繞點C按順時針方向旋轉(zhuǎn)90°后得到△A1B1C,畫出△A1B1C的圖形,并寫出點B1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上,點B的坐標(biāo)為(-1,0)
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;
(2)畫出將△ABC繞原點O按逆時針旋轉(zhuǎn)90°所得的△A2B2C2
(3)△A1B1C1與△A2B2C2成軸對稱圖形嗎?若成軸對稱圖形,寫出對稱軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,方格紙中的每個小正方格都是邊長為1個單位長度的正方形,每個小正方形的頂點叫格點,△ABC的頂點均在格點上,O、M都在格點上.
(1)畫出△ABC關(guān)于直線OM對稱的△A1B1C1
(2)畫出將△ABC繞點O按順時針方向旋轉(zhuǎn)90°后得到的△A2B2C2
(3)△A1B1C1與△A2B2C2組成的圖形是軸對稱圖形碼?如果是軸對稱圖形,請畫出對稱軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,方格紙中的每個小方格都是邊長為1的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上,A(-1,5),B(-1,0),C(-4,3).
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;(其中A1、B1、C1是A、B、C的對應(yīng)點,不寫畫法)
(2)寫出A1、B1、C1的坐標(biāo);
(3)求出△A1B1C1的面積.

查看答案和解析>>

同步練習(xí)冊答案