【題目】將矩形ABCD折疊,使得對角線的兩個端點A. C重合,折痕所在直線交直線AB于點E,如果AB=4,BE=1,則BC的長為______.
【答案】或2
【解析】
分類討論:當(dāng)點E在線段AB上,連結(jié)CE,根據(jù)折疊的性質(zhì)得到AE=CE=3,然后在Rt△BCE中,利用勾股定理計算BC;當(dāng)點E在線段AB的延長線上,連結(jié)CE,根據(jù)折疊的性質(zhì)得AE=CE=5,在Rt△BCE中,根據(jù)勾股定理計算BC.
當(dāng)點E在線段AB上,如圖1,連結(jié)CE,
∵AB=4,BE=1,
∴AE=3,
∵將矩形ABCD折疊,使得對角線的兩個端點A. C重合,
∴AE=CE=3,
在Rt△BCE中,BC=;
當(dāng)點E在線段AB的延長線上,如圖2,連結(jié)CE,
∵AB=4,BE=1,
∴AE=5,
∵將矩形ABCD折疊,使得對角線的兩個端點A. C重合,
∴AE=CE=5,
在Rt△BCE中,BC=,
∴BC的長為或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)是描述客觀世界運(yùn)動變化的重要模型,理解函數(shù)的本質(zhì)是重要的任務(wù)。
(1)如圖1,在平面直角坐標(biāo)系中,已知點A、B的坐標(biāo)分別為A(6,0)、B(0,2),點C(x,y)在線段AB上,計算(x+y)的最大值。小明的想法是:這里有兩個變量x、y,若最大值存在,設(shè)最大值為m,則有函數(shù)關(guān)系式y=-x+m,由一次函數(shù)的圖像可知,當(dāng)該直線與y軸交點最高時,就是m的最大值,(x+y)的最大值為 ;
(2)請你用(1)中小明的想法解決下面問題:
如圖2,以(1)中的AB為斜邊在右上方作Rt△ABM.設(shè)點M坐標(biāo)為(x,y),求(x+y)的最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,∠BAD的平分線交線段BC于點E,交線段DC的延長線于點F,以EC、CF為鄰邊作平行四邊形ECFG.
(1)如圖1,證明平行四邊形ECFG為菱形;
(2)如圖2,若∠ABC=90°,M是EF的中點,求∠BDM的度數(shù);
(3)如圖3,若∠ABC=120°,請直接寫出∠BDG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知坐標(biāo)平面內(nèi)的三個點A(1,3),B(3,1),O(0,0),
(1)請畫出把△ABO向下平移5個單位后得到的△A1B1O1的圖形;
(2)請畫出將△ABO繞點O順時針旋轉(zhuǎn)90°后得到的△A2B2O2,并寫出點A的對應(yīng)點A2的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為12的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,當(dāng)兩個三角形重疊部分的面積為32時,它移動的距離AA′等于________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段,點是線段的中點,先按要求畫圖形,再解決問題.
(1)延長線段至點,使;延長線段至點,使;(尺規(guī)作圖,保留作圖痕跡)
(2)求線段的長度;
(3)若點是線段的中點,求線段的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,以矩形的頂點為原點,所在直線為軸,所在直線為軸,建立平面直角坐標(biāo)系,頂點為點的拋物線經(jīng)過點,點.
(1)寫出拋物線的對稱軸及點的坐標(biāo),
(2)將矩形繞點順時針旋轉(zhuǎn)得到矩形.
①當(dāng)點恰好落在的延長線上時,如圖2,求點的坐標(biāo).
②在旋轉(zhuǎn)過程中,直線與直線分別與拋物線的對稱軸相交于點,點.若,求點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將△ABO繞點A順時針旋轉(zhuǎn)到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點A2在x軸上,依次進(jìn)行下去….若點A(,0),B(0,2),則B2的坐標(biāo)為_____;點B2016的坐標(biāo)為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com