精英家教網 > 初中數學 > 題目詳情
如圖,O為正方形ABCD的對角線AC與BD的交點,M、N兩點分別在BC與AB上,且OM⊥ON.
(1)試說明OM=ON;
(2)試判斷CN與DM的關系,并加以證明.
(1)∵四邊形ABCD是正方形,
∵OC=OB,∠OCM=∠OBN=45°,BD⊥AC,
∵OM⊥ON,
∴∠MON=∠COB=90°,
∴∠MON-∠MOB=∠COD-∠MOB,
∴∠COM=∠BON,
∵在△ONB和△OMC中,
∠NOB=∠MOC
OB=OC
∠OBN=∠OCM

∴△ONB≌△OMC(ASA),
∴OM=ON.

(2)CN=DM,CN⊥DM,
證明:∵四邊形ABCD是正方形,
∴OC=OD,BD⊥AC,
∴∠DOC=∠BOC=90°,
∵∠COM=∠BON,
∴∠DOC+∠COM=∠BOC+∠BON,
即∠DOM=∠CON,
∵在△DOM和△CON中
OD=OC
∠DOM=∠CON
OM=ON

∴△DOM≌△CON(SAS),
∴CN=DM,∠DMO=∠CNO,
∵∠MON=90°,
∴∠NEO+∠CNO=90°,
∵∠MEC=∠NEO,
∴∠DMO+∠MEC=90°,
∴∠MFE=180°-90°=90°,
∴CN⊥DM.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:單選題

如圖,甲、乙兩動點分別從正方形ABCD的頂點A、C同時沿正方形的邊開始移動,甲點依順時針方向環(huán)行,乙點依逆時針方向環(huán)行,若乙的速度是甲的速度的4倍,則它們第2000次相遇在邊(  )
A.AB上B.BC上C.CD上D.DA上

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在正方形ABCD中,對角線AC與BD相交于點O,AF平分∠BAC,交BD于點F.

(1)求證:AB-OF=
1
2
AC
;
(2)點A1、點C1分別同時從A、C兩點出發(fā),以相同的速度運動相同的時間后同時停止,如圖,A1F1平分∠BA1C1,交BD于點F1,過點F1作F1E⊥A1C1,垂足為E,請猜想EF1,AB與
1
2
A1C1
三者之間的數量關系,并證明你的猜想;
(3)在(2)的條件下,當A1E1=6,C1E1=4時,求BD的長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知正方形ABCD的邊長為12,E,F分別是AD,CD上的點,且EF=10,∠EBF=45°,則AE的長為______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

一個邊長為1的正方形,以它的對角線為邊向外做第二個正方形,再以第二個正方形的對角線為邊向外作第三個正方形,以此類推,則第四個正方形的邊長為______,第n個正方形的邊長為______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

正方形ABCD中,E為AB上一點,F為CB延長線上一點,且∠EFB=45°.
(1)求證:AF=CE;
(2)你認為AF與CE有怎樣的位置關系?說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,邊長為5的正方形ABCD的對角線AC、BD相交于點P,頂點A在x軸正半軸上運動,頂點B在y軸正半軸上運動(x軸的正半軸、y軸的正半軸都不包含原點O),頂點C、D都在第一象限.
(1)當點坐標為A(4,0)時,求點D的坐標;
(2)求證:OP平分∠AOB;
(3)直接寫出OP長的取值范圍(不要證明).

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

?ABCD中,O是對角線的交點,不能判定這個平行四邊形是正方形的是( 。
A.∠BAD=90°,AB=ADB.∠BAD=90°,AC⊥BD
C.AC⊥BD,AC=BDD.AB=AC,∠BAD=∠BCD

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在正方形ABCD中,如果點P是直線CD上的一個動點(不與點C,D重合),連接PA,分別過B,D作BE⊥PA,DF⊥PA,垂足為E,F.

(1)請在上面圖中畫出不同情況下的草圖,并猜想BE,DF,EF這三條線段之間有怎樣的數量關系;
(2)請在上面的3個圖中選擇一個證明你的結論.

查看答案和解析>>

同步練習冊答案