【題目】如圖,四邊形ABCD中,AD∥BC,BA⊥AD,BC=DC,BE⊥CD于點E.
(1)求證:△ABD≌△EBD;
(2)過點E作EF∥DA,交BD于點F,連接AF.求證:四邊形AFED是菱形.
【答案】(1)△ABD≌△EBD;(2)四邊形AFED是菱形.
【解析】試題分析:(1)首先證明∠1=∠2.再由BA⊥AD,BE⊥CD可得∠BAD=∠BED=90°,然后再加上公共邊BD=BD可得△ABD≌△EBD;
(2)首先證明四邊形AFED是平行四邊形,再有AD=ED,可得四邊形AFED是菱形.
試題解析:證明:(1)如圖,
∵AD∥BC,
∴∠1=∠DBC.
∵BC=DC,
∴∠2=∠DBC.
∴∠1=∠2.
∵BA⊥AD,BE⊥CD
∴∠BAD=∠BED=90°,
在△ABD和△EBD中,
∴△ABD≌△EBD(AAS);
(2)由(1)得,AD=ED,∠1=∠2.
∵EF∥DA,
∴∠1=∠3.
∴∠2=∠3.
∴EF=ED.
∴EF=AD.
∴四邊形AFED是平行四邊形.
又∵AD=ED,
∴四邊形AFED是菱形.
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC與△DEF全等,BC=EF=4cm,△ABC的面積是12cm2 , 則EF邊上的高是( )
A. 3cm B. 4cm C. 6cm D. 無法確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標系xOy中,已知函數(shù)y1=(x>0)與y2=﹣(x<0)的圖象如圖所示,點A、B是函數(shù)y1=(x>0)圖象上的兩點,點P是y2=﹣(x<0)的圖象上的一點,且AP∥x軸,點Q是x軸上一點,設(shè)點A、B的橫坐標分別為m、n(m≠n).
(1)求△APQ的面積;
(2)若△APQ是等腰直角三角形,求點Q的坐標;
(3)若△OAB是以AB為底的等腰三角形,求mn的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從M地到N地有一條普通公路,總路程為120km;有一條高速公路,總路程為126km.甲車和乙車同時從M地開往N地,甲車全程走普通公路,乙車先行駛了另一段普通公路,然后再上高速公路.假設(shè)兩車在普通公路和高速公路上分別保持勻速行駛,其中在普通公路上的行車速度為60km/h,在高速公路上的行車速度為100km/h.設(shè)兩車出發(fā)x h時,距N地的路程為y km,圖中的線段AB與折線ACD分別表示甲車與乙車的y與x之間的函數(shù)關(guān)系.
(1)填空:a= ,b= ;
(2)求線段AB、CD所表示的y與x之間的函數(shù)關(guān)系式;
(3)兩車在何時間段內(nèi)離N地的路程之差達到或超過30km?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:△ABC內(nèi)接于⊙O,點D在OC的延長線上,sinB=,∠D=30度.
(1)求證:AD是⊙O的切線;
(2)若AC=6,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點坐標A(1,3),與x軸的一個交點B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結(jié)論:
①2a+b=0;
②abc>0;
③方程ax2+bx+c=3有兩個相等的實數(shù)根;
④拋物線與x軸的另一個交點是(-1,0);
⑤當1<x<4時,有y2<y1,
其中正確的是( ).
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com