已知:如圖,在平面直角坐標(biāo)系中,半徑為2
2
的⊙O′與y軸交于A、B兩點(diǎn),與直線OC相切于點(diǎn)C,∠BOC=45°,BC⊥OC,垂足為C.
(1)判斷△ABC的形狀;
(2)在
BC
上取一點(diǎn)D,連接DA、DB、DC,DA交BC于點(diǎn)E.求證:BD•CD=AD•ED;
(3)延長BC交x軸于點(diǎn)G,求經(jīng)過O、C、G三點(diǎn)的二次函數(shù)的解析式.
(1)∵OC與⊙O'相切
∴O'C⊥OC
又∵BC⊥OC
∴O'在BC上,即BC為⊙O'的直徑
∴∠CAB=90°
∴CA⊥BA
∵∠BOC=45°
∴△BOC為等腰直角三角形
∴A為OB的中點(diǎn),CD=
1
2
OB=AB
∴△ABC是等腰直角三角形.

(2)證明:∵AC=AB
AC
=
AB

∴∠ADC=∠ADB
又∵∠CAD=∠CBD
∴△ADC△BDE
AD
BD
=
DC
DE
,
即BD•CD=AD•ED.

(3)在Rt△BOC中
∵⊙O′的半徑為2
2

∴BC=4
2

∵∠BOC=45°
∴OB=
2
•BC=8,CA=OA=AB=
1
2
OB=4
∵CAx軸,
∴C點(diǎn)坐標(biāo)為(-4,-4)
∴BC=CG
∴AC為△BGO的中位線
∴OG=2AC=8
∴G點(diǎn)坐標(biāo)為(-8,0)
設(shè)過O、C、G三點(diǎn)的二次函數(shù)為y=ax2+bx+c,
由已知,函數(shù)圖象過(0,0),(-4,-4),(-8,0)三點(diǎn),得
c=0
16a-4b=-4
64a-8b=0

解這個方程組,得
a=
1
4
,b=2,c=0
因此,所求二次函數(shù)是y=
1
4
x2+2x.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=-
1
2
x2+bx+4
上有不同的兩點(diǎn)E(k+3,-k2+1)和F(-k-1,-k2+1).
(1)求拋物線的解析式;
(2)如圖,拋物線y=-
1
2
x2+bx+4
與x軸和y軸的正半軸分別交于點(diǎn)A和B,M為AB的中點(diǎn),∠PMQ在AB的同側(cè)以M為中心旋轉(zhuǎn),且∠PMQ=45°,MP交y軸于點(diǎn)C,MQ交x軸于點(diǎn)D.設(shè)AD的長為m(m>0),BC的長為n,求n和m之間的函數(shù)關(guān)系式;
(3)當(dāng)m,n為何值時,∠PMQ的邊過點(diǎn)F?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=-x2+mx+3與x軸的一個交點(diǎn)A(3,0).
(1)你一定能分別求出這條拋物線與x軸的另一個交點(diǎn)B及與y軸的交點(diǎn)C的坐標(biāo),試試看;
(2)設(shè)拋物線的頂點(diǎn)為D,請?jiān)趫D中畫出拋物線的草圖.若點(diǎn)E(-2,n)在直線BC上,試判斷E點(diǎn)是否在經(jīng)過D點(diǎn)的反比例函數(shù)的圖象上,把你的判斷過程寫出來;
(3)請?jiān)O(shè)法求出tan∠DAC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,拋物線y=-x2-(m-1)x+m2-6交x軸負(fù)半軸于點(diǎn)A,交y軸正半軸于點(diǎn)B(0,3),頂點(diǎn)C位于第二象限,連接AB,AC,BC.
(1)求拋物線的解析式;
(2)點(diǎn)D是y軸正半軸上一點(diǎn),且在B點(diǎn)上方,若∠DCB=∠CAB,請你猜想并證明CD與AC的位置關(guān)系;
(3)設(shè)與△AOB重合的△EFG從△AOB的位置出發(fā),沿x軸負(fù)方向平移t個單位長度(0<t≤3)時,△EFG與△ABC重疊部分的面積為S,求S與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一拱橋,橋下的水面寬AB=20米,拱高4米,若水面上升3米至EF時,水面寬EF應(yīng)是多少米?
(1)若你將該拱橋當(dāng)作拋物線,請你在坐標(biāo)系中畫出該拱橋,并用函數(shù)的知識來求出EF的長.
(2)若你將拱橋看作圓的一部分,請你用圓的有關(guān)知識畫圖,并解答.
(3)從中你得到什么啟示.(用一句話回答.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線C1y1=
1
2
x2-x+1
,點(diǎn)F(1,1).
(I)求拋物線C1的頂點(diǎn)坐標(biāo);
(II)①若拋物線C1與y軸的交點(diǎn)為A,連接AF,并延長交拋物線C1于點(diǎn)B,求證:
1
AF
+
1
BF
=2

②取拋物線C1上任意一點(diǎn)P(xP,yP)(0<xP<1),連接PF,并延長交拋物線C1于Q(xQ,yQ).試判斷
1
PF
+
1
QF
=2
是否成立?請說明理由;
(III)將拋物線C1作適當(dāng)?shù)钠揭,得拋物線C2y2=
1
2
(x-h)2
,若2<x≤m時,y2≤x恒成立,求m的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某租憑公司擁有汽車100輛,當(dāng)每輛車的月租金為3000元時,可全部租出.當(dāng)每輛車的月租金每增加50元時,未租出的車將會增加1輛.租出的車每月需維護(hù)費(fèi)150元,未租出的車每月需維護(hù)費(fèi)50元.
(1)當(dāng)每輛車的月租金定為3600元時,能租出______輛車(直接填寫答案);
(2)設(shè)每輛車的月租金為x(x≥3000)元,用含x的代數(shù)式填空:
(3)每輛車的月租金定為多少元時,租憑公司的月收益最大,最大月收益是多少元?
為租出的車輛數(shù)租出的車輛
所有未租出的車每月的維護(hù)費(fèi)租出的車每輛的月收益

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖:已知拋物線y=
1
4
x2+
3
2
x-4與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,O為坐標(biāo)原點(diǎn).
(1)求A,B,C三點(diǎn)的坐標(biāo);
(2)已知矩形DEFG的一條邊DE在AB上,頂點(diǎn)F,G分別在線段BC,AC上,設(shè)OD=m,矩形DEFG的面積為S,求S與m的函數(shù)關(guān)系式,并指出m的取值范圍;
(3)當(dāng)矩形DEFG的面積S取最大值時,連接對角線DF并延長至點(diǎn)M,使FM=
2
5
DF.試探究此時點(diǎn)M是否在拋物線上,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商場銷售某種品牌的純牛奶,已知進(jìn)價(jià)為每箱40元,生產(chǎn)廠家要求每箱售價(jià)在40元至70元之間.市場調(diào)查發(fā)現(xiàn):若每箱以50元銷售,平均每天可銷售90箱,價(jià)格每降低1元,平均每天多銷售3箱,價(jià)格每升高l元,平均每天少銷售3箱.
(1)寫出平均每天銷售量y(箱)與每箱售價(jià)x(元)之間的函數(shù)關(guān)系式.(注明范圍)
(2)求出商場平均每天銷售這種牛奶的利潤W(元),與每箱牛奶的售價(jià)x(元)之間的二次函數(shù)關(guān)系式.(每箱的利潤=售價(jià)-進(jìn)價(jià))
(3)求出(2)中二次函數(shù)圖象的頂點(diǎn)坐標(biāo),并求當(dāng)x=40,70時W的值.在給出的坐標(biāo)系中畫出函數(shù)圖象的草圖.
(4)由函數(shù)圖象可以看出,當(dāng)牛奶售價(jià)為多少時,平均每天的利潤最大?最大利潤為多少

查看答案和解析>>

同步練習(xí)冊答案