7.如圖,拋物線y=kx2-2kx-3k(k>0)與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn).
(1)請(qǐng)求出拋物線頂點(diǎn)M的坐標(biāo)(用含k的代數(shù)式表示),A、B兩點(diǎn)的坐標(biāo);
(2)試探究,△BCM與△ABC的面積比值是否不變?若不變,試求出這個(gè)比值;若會(huì)變,請(qǐng)說(shuō)明理由.

分析 (1)運(yùn)用配方法把二次函數(shù)一般式化為頂點(diǎn)式,求出頂點(diǎn)坐標(biāo),解方程求出A、B兩點(diǎn)的坐標(biāo);
(2)過(guò)M作MD⊥x軸于點(diǎn)D,根據(jù)三角形的面積公式計(jì)算即可.

解答 解:(1)∵y=kx2-2kx-3k=k(x-1)2-4k,
∴拋物線頂點(diǎn)M坐標(biāo)為(1,-4k),
∵拋物線y=kx2-2kx-3k(k>0)與x軸交于A、B兩點(diǎn),
∴當(dāng)y=0時(shí),kx2-2kx-3k=0,
∵k>0,∴x2-2x-3=0,
解得:x1=-1,x2=3,
則A、B兩點(diǎn)的坐標(biāo)為(-1,0),(3,0);
(2)不變,
當(dāng)x=0時(shí),y=-3k,即C(0,-3k),
∴S△ABC=$\frac{1}{2}$×|3-(-1)|×|-3k|=6|k|=6k,
過(guò)M作MD⊥x軸于點(diǎn)D,
則有OD=1,BD=OB-OD=2,MD=|-4k|=4k,
∴S△BCM=S△BDM+S梯形OCMD-S△BOC=$\frac{1}{2}$BD•DM+$\frac{1}{2}$(OC+DM)•OD-$\frac{1}{2}$OB•OC
=$\frac{1}{2}$×2×4k+$\frac{1}{2}$×(3k+4k)×1-$\frac{1}{2}$×3×3k=3k,
∴S△BCM:S△ABC=3k:6k=1:2.
∴△BCM與△ABC的面積比不變,為1:2.

點(diǎn)評(píng) 本題考查的是二次函數(shù)的性質(zhì)、拋物線與x軸的交點(diǎn)的求法,正確運(yùn)用配方法把二次函數(shù)一般式化為頂點(diǎn)式是解題的關(guān)鍵,注意方程思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在Rt△ABC中,∠C=90°,∠A=60°,∠A的平分線AM的長(zhǎng)為15cm,求直角邊AC和斜邊AB的長(zhǎng)(精確到0.1cm).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

18.某商店銷售C、D兩種羽毛球拍,C種羽毛球拍每個(gè)30元,D種每個(gè)32元,該商店對(duì)這兩種羽毛球拍開(kāi)展了促銷活動(dòng),具體辦法如下:C種品牌羽毛球拍按原價(jià)的八折銷售,D種羽毛球拍若購(gòu)買數(shù)量不超過(guò)5個(gè)(含5個(gè))時(shí),則按原價(jià)銷售,若購(gòu)買的數(shù)量超過(guò)5個(gè),則超出部分按原價(jià)的六折銷售,若某班購(gòu)買C、D兩種品牌的羽毛球拍數(shù)量分別是c、d個(gè).
(1)若c=2,d=3,則該班購(gòu)買C、D兩種品牌的羽毛球拍共需多少元?
(2)若c=4,d=9,則該班購(gòu)買C、D兩種品牌的羽毛球拍共需多少元?
(3)若d>5,用含c、d的代數(shù)式分別表示該班購(gòu)買C、D兩種品牌的羽毛球拍的費(fèi)用分別是多少元?
(4)小明準(zhǔn)備聯(lián)系一部分同學(xué)集體購(gòu)買同一品牌的羽毛球拍,若購(gòu)買30個(gè)羽毛球拍,通過(guò)計(jì)算說(shuō)明,購(gòu)買哪種品牌的羽毛球拍比較合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.農(nóng)科所為了考察某種水稻穗長(zhǎng)的分布情況,在一塊試驗(yàn)田里隨機(jī)抽取了52個(gè)谷穗作為樣本,量得它們的長(zhǎng)度(單位:cm).對(duì)樣本數(shù)據(jù)適當(dāng)分組后,列出了如下頻數(shù)分布表:
穗長(zhǎng)4.5≤x<55≤x<5.55.5≤x<66≤x<6.56.5≤x<77≤x<7.5
頻數(shù)481213105
(1)請(qǐng)你在圖1,圖2中分別繪出頻數(shù)分布直方圖和頻數(shù)折線圖;
(2)請(qǐng)你對(duì)這塊試驗(yàn)田里的水稻穗長(zhǎng)進(jìn)行分析;
(3)求這塊試驗(yàn)田里穗長(zhǎng)在5.5≤x<7范圍內(nèi)的谷穗的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,已知一次函數(shù)y1=(m-1)x+2與正比例函數(shù)y2=2x圖象相交于點(diǎn)A(2,n),y1=(m-1)x+2與x軸交于點(diǎn)B.
(1)求出m、n的值;
(2)求出△ABO的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,AB是⊙O的直徑,C是弧AB的中點(diǎn),⊙O的切線BD交AC的延長(zhǎng)線于點(diǎn)D.
(1)求證:AC=CD;
(2)若OB=2,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖,H為平行四邊形ABCD中AD邊上一點(diǎn),且AH=$\frac{1}{2}$DH,AC和BH交于點(diǎn)K,則AK:KC等于( 。
A.1:2B.1:3C.1:4D.2:3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

16.計(jì)算下列各題
(1)$\root{3}{125}$-$\sqrt{64}$÷|-$\frac{1}{2}$|
(2)-24+(1-$\frac{1}{3}$+$\frac{1}{12}$)×(-6)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若關(guān)于x的不等式組$\left\{\begin{array}{l}{2x≥3}\\{x+a≤2}\end{array}\right.$有解,則實(shí)數(shù)a的取值范圍為( 。
A.a≤$\frac{1}{2}$B.a<$\frac{1}{2}$C.a≥$\frac{1}{2}$D.a>$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案