如圖,在等邊△ABC中,AC=9,點(diǎn)O在AC上,且AO=4,點(diǎn)P是AB上一動(dòng)點(diǎn),連結(jié)OP,將線段OP繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°得到線段OD.要使點(diǎn)D恰好落在BC上,則AP的長(zhǎng)是( 。
分析:根據(jù)AC=9,AO=4,求出OC=5,再根據(jù)等邊三角形的性質(zhì)得∠A=∠C=60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得OD=OP,∠POD=60°,根據(jù)三角形內(nèi)角和和平角定義得∠AOP+∠APO+∠A=180°,∠AOP+∠COD+∠POD=180°,利用等量代換可得∠APO=∠COD,然后證出△AOP≌△CDO,得出AP=CO=5.
解答:解:∵AC=9,AO=4,
∴OC=5,
∵△ABC為等邊三角形,
∴∠A=∠C=60°,
∵線段OP繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)60゜得到線段OD,要使點(diǎn)D恰好落在BC上,
∴OD=OP,∠POD=60°,
∵∠AOP+∠APO+∠A=180°,∠AOP+∠COD+∠POD=180°,
∴∠AOP+∠APO=120°,∠AOP+∠COD=120°,
∴∠APO=∠COD,
在△AOP和△CDO中,
∠A=∠C
∠APO=∠COD
OP=OD
,
∴△AOP≌△CDO(AAS),
∴AP=CO=5.
故選B.
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì)、等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì),熟練掌握對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等、對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角、旋轉(zhuǎn)前、后的圖形全等是本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、如圖,在等邊△ABC的邊BC上任取一點(diǎn)D,作∠ADE=60°,DE交∠C的外角平分線于E,則△ADE是
等邊
三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在等邊△ABC中,D為BC邊上一點(diǎn),E為AC邊上一點(diǎn),且∠ADE=60°,BD=3,CE=2,則△ABC的面積為( 。
A、81
3
B、
81
3
2
C、
81
3
4
D、
81
3
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖,在等邊△ABC中,AD是∠BAC的平分線,點(diǎn)E在AC邊上,且∠EDC=15°.
(1)試說(shuō)明直線AD是線段BC的垂直平分線;
(2)△ADE是什么三角形?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等邊△ABC中,D是AC的中點(diǎn),延長(zhǎng)BC到點(diǎn)E,使CE=CD,AB=10cm.
(1)求BE的長(zhǎng);
(2)△BDE是什么三角形,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等邊△ABC中,BF是高,D是BF上一點(diǎn),且OF=AF,作OE⊥BF,垂足為D,且OE=OB,連AE、AO、BE,求證:
(1)AB=AE;
(2)AE⊥BC; 
(3)AO⊥BE.

查看答案和解析>>

同步練習(xí)冊(cè)答案