【題目】在矩形ABCD中,AB=6cm,BC=8cm,若將矩形對角線BD對折,使B點與D點重合,四邊形EBFD是菱形嗎?請說明理由,并求這個菱形的邊長.
【答案】解:四邊形EBFD是菱形, 理由:∵將矩形對角線BD對折,使B點與D點重合,
∴EF垂直平分BD,
∴BO=DO,
∵四邊形ABCD是矩形,
∴AD=BC,
∴∠EDB=∠DBC,
∴∠DEF=∠EFB,
在△EOD和△FOB中
,
∴△EOD≌△FOB(ASA),
∴EO=FO,
∴四邊形BEDF是平行四邊形,
又∵BD⊥EF,
∴平行四邊形BEDF是菱形;
設BE=x,
可得方程:62+(8﹣x)2=x2 ,
解得:x=6.25,
答:菱形的邊長為6.25cm
【解析】首先利用翻折變換的性質得出BO=DO,進而得出∠DEF=∠EFB,求出△EOD≌△FOB,進而得出四邊形BEDF是平行四邊形,再利用BD⊥EF,得出平行四邊形BEDF是菱形;利用菱形的性質以及勾股定理得出菱形的邊長.
【考點精析】本題主要考查了菱形的判定方法和矩形的性質的相關知識點,需要掌握任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形;矩形的四個角都是直角,矩形的對角線相等才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】定義一種對正整數(shù)n的“F運算”:①當n為奇數(shù)時,結果為3n+5;②當n為偶數(shù)時,結果為(其中k是使為奇數(shù)的正整數(shù));并且運算重復進行.例如,取n=26,第3次“F運算”的結果是11.則:若n=449,則第449次“F運算”的結果是____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D是AB中點,聯(lián)結CD.
(1)若AB=10且∠ACD=∠B,求AC的長.
(2)過D點作BC的平行線交AC于點E,設 = , = ,請用向量 、 表示 和 (直接寫出結果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A從原點出發(fā)沿數(shù)軸向左運動,同時,點B也從原點出發(fā)沿數(shù)軸向右運動,3秒后,兩點相距15個單位長度.已知點B的速度是點A的速度的4倍(速度單位:單位長度/秒).
(1)求出點A、點B運動的速度,并在數(shù)軸上標出A、B兩點從原點出發(fā)運動3秒時的位置;
(2)若A、B兩點從(1)中的位置開始,仍以原來的速度同時沿數(shù)軸向左運動,幾秒時,原點恰好處在點A、點B的正中間?
(3)若A、B兩點從(1)中的位置開始,仍以原來的速度同時沿數(shù)軸向左運動時,另一點C同時從B點位置出發(fā)向A點運動,當遇到A點后,立即返回向B點運動,遇到B點后又立即返回向A點運動,如此往返,直到B點追上A點時,C點立即停止運動.若點C一直以20單位長度/秒的速度勻速運動,那么點C從開始運動到停止運動,行駛的路程是多少個單位長度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D是AB中點,聯(lián)結CD.
(1)若AB=10且∠ACD=∠B,求AC的長.
(2)過D點作BC的平行線交AC于點E,設 = , = ,請用向量 、 表示 和 (直接寫出結果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=﹣x2+2bx+c與x軸交于點A、B(點A在點B的右側),且與y軸正半軸交于點C,已知A(2,0)
(1)當B(﹣4,0)時,求拋物線的解析式;
(2)O為坐標原點,拋物線的頂點為P,當tan∠OAP=3時,求此拋物線的解析式;
(3)O為坐標原點,以A為圓心OA長為半徑畫⊙A,以C為圓心, OC長為半徑畫圓⊙C,當⊙A與⊙C外切時,求此拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=kx+b的圖象交于A,B兩點,點A的坐標為(2,6),點B的坐標為(n,1).
(1)求反比例函數(shù)與一次函數(shù)的表達式;
(2)點E為y軸上一個動點,若S△AEB=5,求點E的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,ABCD的頂點B,C在x軸上,A,D兩點分別在反比例函數(shù)y=﹣ (x<0)與y= (x>0)的圖象上,則ABCD的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,過點B作⊙O的切線BM,弦CD∥BM,交AB于點F,且=,連接AC,AD,延長AD交BM于點E.
(1)求證:△ACD是等邊三角形.
(2)連接OE,若DE=2,求OE的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com