如圖,已知點(diǎn)F的坐標(biāo)為(0,1),過點(diǎn)F作一條直線與拋物線y=交于點(diǎn)A和點(diǎn)B,若以線段AB為直徑作圓,則該圓與直線y=-1的位置關(guān)系是   
【答案】分析:設(shè)AB的中點(diǎn)為E,分別過A、E、B作y=-1的垂線,易知EG是梯形ABDC的中位線,則AC+BD=2EG;設(shè)出直線AB的解析式,分別求出A、B點(diǎn)的坐標(biāo);然后表示出AC、BD、AB的長;若AC+BD=2EG=AB則以AB為直徑的圓與y=-1相交,若2EG>AB則相離,若2EG<AB則相交.
解答:解:如圖;設(shè)AB的中點(diǎn)為E,分別過A、E、B作y=-1的垂線,垂足為C、G、D;
設(shè)直線AB的解析式為y=kx+1;
聯(lián)立拋物線解析式,得:
,
解得,;
故A(2k-2,2k2+1-2k),B(2k+2,2k2+1+2k);
∴AB=4k2+4,AC=2k2+1-2k+1,BD=2k2+1+2k+1;
∴AC+BD=4k2+4=AB;
易知EG是梯形ACDB的中位線,則AC+BD=2EG;
∴AB=2EG,
∴以AB為直徑的圓與y=-1相切.
點(diǎn)評(píng):此題是二次函數(shù)的綜合題,涉及到:函數(shù)圖象交點(diǎn)坐標(biāo)的求法、梯形中位線定理、直線與圓的位置關(guān)系等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)F的坐標(biāo)為(3,0),點(diǎn)A,B分別是某函數(shù)圖象與x軸、y軸的交點(diǎn),點(diǎn)P是此圖象上的一動(dòng)點(diǎn).設(shè)點(diǎn)P的橫坐標(biāo)為x,PF的長為d,且d與x之間滿足關(guān)系:d=5-
35
x(0≤x≤5),給出以下四個(gè)結(jié)論:①AF=2;②BF=5;③OA=5;④OB=3.其中正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B的坐標(biāo)為(
3
2
,-2),點(diǎn)P在直線y=-x上運(yùn)動(dòng),當(dāng)|PA-PB|最大時(shí)點(diǎn)P的坐標(biāo)為(  )
A、(2,-2)
B、(4,-4)
C、(
5
2
,-
5
2
D、(5,-5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)A的坐標(biāo)為(
3
,3),AB丄x軸,垂足為B,連接OA,反比例函數(shù)y=
k
x
(k>0)的圖象與線段OA、AB分別交于點(diǎn)C、D.若AB=3BD,以點(diǎn)C為圓心,CA的
5
4
倍的長為半徑作圓,則該圓與x軸的位置關(guān)系是
 
(填”相離”,“相切”或“相交“).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知點(diǎn)B的坐標(biāo)為(6,9),點(diǎn)A的坐標(biāo)為(6,6),點(diǎn)P為⊙A上一動(dòng)點(diǎn),PB的延長線交⊙A于點(diǎn)N、直線CD⊥AP于點(diǎn)C,交PN于點(diǎn)D,交⊙A于E、F兩點(diǎn),且PC:CA=2:3.
(1)當(dāng)點(diǎn)P運(yùn)動(dòng)使得點(diǎn)E為劣弧
PN
的中點(diǎn)時(shí),求證:DF=DN;
(2)在(1)的條件下求tan∠CDP的值;
(3)當(dāng)⊙A的半徑為5,且△APD的面積取得最大值時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知點(diǎn)A的坐標(biāo)為(
3
,3),AB⊥x軸,垂足為B,連接OA,反比例函數(shù)y=
3
x
的圖象與線段OA、AB分別交于點(diǎn)C、D.若以點(diǎn)C為圓心,CA的k倍的長為半徑作圓,該圓與x軸相切,則k的值為
3+
3
4
3+
3
4

查看答案和解析>>

同步練習(xí)冊(cè)答案