如圖,已知二次函數(shù)y=-數(shù)學(xué)公式x2+mx+3的圖象經(jīng)過點A(-1,數(shù)學(xué)公式).
(1)求該二次函數(shù)的表達式,并寫出該函數(shù)圖象的頂點坐標;
(2)點P(2a,a)(其中a>0),與點Q均在該函數(shù)的圖象上,且這兩點關(guān)于圖象的對稱軸對稱,求a的值及點Q到y(tǒng)軸的距離.

解:(1)∵二次函數(shù)y=-x2+mx+3的圖象經(jīng)過點A(-1,),
∴-×(-1)2-m+3=,
解得m=-2,
∴該二次函數(shù)的表達式為y=-x2-2x+3,
∵y=-x2-2x+3=-(x+2)2+5,
∴頂點坐標為(-2,5);

(2)∵點P(2a,a)(其中a>0)在該函數(shù)圖象上,
∴-×(2a)2-2×2a+3=a,
解得a1=,a2=-3(舍去),
∴點P的坐標為(1,),
∵點P、Q關(guān)于對稱軸x=-2對稱,
∴點Q的坐標為(-5,),
∴點Q到y(tǒng)軸的距離為|-5|=5,
故答案為:a=,點Q到y(tǒng)軸的距離為5.
分析:(1)把點A的坐標代入二次函數(shù)解析式,利用待定系數(shù)法求二次函數(shù)解析式解答,把函數(shù)解析式轉(zhuǎn)化成頂點式解析式,寫出頂點坐標即可;
(2)把點P的坐標代入函數(shù)解析式計算即可求出a的值,從而得到點P的坐標,再根據(jù)二次函數(shù)的對稱性寫出點Q的坐標,然后根據(jù)點Q到y(tǒng)軸的距離點Q的縱坐標的絕對值解答.
點評:本題考查了待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的對稱性,以及二次函數(shù)圖象上點的特征,先求出m的值是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)圖象的頂點坐標為C(1,1),直線y=kx+m的圖象與該二次函數(shù)的圖象交于A、B兩點,其中A點坐標為(
5
2
,
13
4
),B點在y軸上,直線與x軸的交點為F,P為線段AB上的一個動點(點P與A、B不重合),過P作x軸的垂線與這個二次函數(shù)的圖象交于E點.
(1)求k,m的值及這個二次函數(shù)的解析式;
(2)設(shè)線段PE的長為h,點P的橫坐標為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)D為直線AB與這個二次函數(shù)圖象對稱軸的交點,在線段AB上是否存在點P,使得以點P、E、D為頂點的精英家教網(wǎng)三角形與△BOF相似?若存在,請求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)y=ax2+bx+3(a≠0)的圖象與x軸交于點A(-1,0)和點B(3,0)兩點(點A在點B的左邊),與y軸交于點C.
(1)求此二次函數(shù)的解析式,并寫出它的對稱軸;
(2)若直線l:y=kx(k>0)與線段BC交于點D(不與點B,C重合),則是否存在這樣的直線l,使得以B,O,D為頂點的三角形與△BAC相似?若存在,求出點D的坐標;若不存在,請說明理由;
(3)若直線l′:y=m與該拋物線交于M、N兩點,且以MN為直徑的圓與x軸相切,求該圓半徑的長度.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)圖象的頂點坐標為C(1,0),直線y=x+b與該二次函數(shù)的圖象交于A、B兩點,其中點A的坐標為(3,4),點B在y軸上.點P為線段AB上的一個動點(點P與A、B不重合),過點P作x軸的垂線與該二次函數(shù)的圖象交于點E.
(1)求b的值及這個二次函數(shù)的關(guān)系式;
(2)設(shè)線段PE的長為h,點P的橫坐標為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)若點D為直線AB與該二次函數(shù)的圖象對稱軸的交點,則四邊形DCEP能否構(gòu)成平行四邊形?如果能,請求出此時P點的坐標;如果不能,請說明理由.
(4)以PE為直徑的圓能否與y軸相切?如果能,請求出點P的坐標;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)y=ax2-4x+c的圖象與坐標軸交于點A(-1,0)和點C(0,-5).
(1)求該二次函數(shù)的解析式和它與x軸的另一個交點B的坐標.
(2)在上面所求二次函數(shù)的對稱軸上存在一點P(2,-2),連接OP,找出x軸上所有點M的坐標,使得△OPM是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•衡水一模)如圖,已知二次函數(shù)y=-
12
x2+bx+c
的圖象經(jīng)過A(2,0)、B(0,-6)兩點.
(1)求這個二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)圖象的對稱軸與x軸交于點C,連接BA、BC,求△ABC的面積;
(3)若拋物線的頂點為D,在y軸上是否存在一點P,使得△PAD的周長最?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案