【題目】如圖, 中, ,以為直徑的交于點,過點的切線交于.
(1)求證: ;(2)若,求的長.
【答案】(1)證明見解析;(2)5.
【解析】試題分析: (1)連接BD,根據(jù)直徑所對的圓周角是直角,得到直角三角形ABD和BCD,根據(jù)切線的判定定理知BC是圓的切線,結(jié)合切線長定理得到BE=DE,再根據(jù)等邊對等角以及等角的余角相等證明DE=CE;
(2)在直角三角形ABC中,根據(jù)銳角三角函數(shù)的概念以及勾股定理計算它的三邊.再根據(jù)相似三角形的判定和性質(zhì)進(jìn)行計算.
試題解析: (1)證明:連接BD,
∵AB是直徑,∠ABC=90°,
∴BC是O的切線,∠BDC=90°.
∵DE是O的切線,
∴DE=BE(切線長定理).
∴∠EBD=∠EDB.
又∵∠DCE+∠EBD=∠CDE+∠EDB=90°,
∴∠DCE=∠CDE,
∴DE=CE.
故DE=BC.
(2)由(1)知,BC=2DE=6.
在Rt△ABC中,AB=BCtanC=6×=3,
AC==9.
∵∠ADB=∠ABC=90°,∠A=∠A,
∴△ABD∽△ACB.
∴,
∴.
解得AD=5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點A、C分別在x、y軸的正半軸上,點D為對角線OB的中點,點E(8,n)在邊AB上,反比例函數(shù)(k≠0)在第一象限內(nèi)的圖象經(jīng)過點D、E,且tan∠BOA=.
(1)求反比例函數(shù)的解析式和n的值;
(2)若反比例函數(shù)的圖象與矩形的邊BC交于點F,將矩形折疊,使點O與點F重合,折痕分別與x、y軸正半軸交于點H、G,求G點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于反比例函數(shù)y=﹣ , 下列說法不正確的是( 。
A.圖象經(jīng)過點(1,﹣1)
B.圖象在第二、四象限
C.x>0時,y隨x的增大而增大
D.x<0時,y隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A(20,0),以O(shè)A為直徑在第一象限內(nèi)作半圓C,點B是該半圓周上一動點,連結(jié)OB、AB,并延長AB至點D,使DB=AB,過點D作x軸垂線,分別交x軸、直線OB于點E、F,點E為垂足,連結(jié)CF.
(1)當(dāng)∠AOB=30°時,求弧OB的長度;
(2)當(dāng)DE=16時,求線段EF的長;
(3)在點B運動過程中,是否存在以點E、C、F為頂點的三角形與△AOB相似,若存在,請求出此
時點E的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(1,1)關(guān)于y軸對稱的點的坐標(biāo)是
A. (-1,-1) B. (1,-1) C. (-1,1) D. (1,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】盒中有x個黑球和y個白球,這些球除顏色外無其他差別.若從盒中隨機(jī)取一個球,它是黑球的 概率是;中再放進(jìn)1個黑球,這時取得黑球的概率變?yōu)?/span>
(1)填空:x=_____________, y=____________________;
(2)小王和小林利用x黑球和y個白球進(jìn)行摸球游戲。約定:從盒中隨機(jī)摸取一個,接著從剩下的球中再隨機(jī)摸取一個,若兩球顏色相同則小王勝,若顏色不同則小林勝.求兩個人獲勝的概率各是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com