如圖①,△ABC中,AB=BC,∠B=90°,點A,B的坐標(biāo)分別(0,10),(8,4),點C在 第一象限.動點P從點A出發(fā)沿邊AB―BC勻速運動,同時動點Q以相同的速度在x軸上運動,圖②是當(dāng)點P在邊AB上運動時,點Q的橫坐標(biāo)x(長度單位)關(guān)于運動時間t(秒)的函數(shù)圖象.

(1)求點P、Q運動的速度;

(2)求點C的坐標(biāo);

(3)求點P在邊AB上運動時,△OPQ的面積S(平方單位)關(guān)于時間t(秒)的函數(shù)關(guān)系式,并求當(dāng)點P運動到邊AB上哪個位置時,△OPQ的面積最大?

(4)(本小題為選做題,做對另加3分,但全卷滿分不超過150分)已知點P在邊AB上運動時,∠OPQ的大小隨時間t的增大而增大,點P在邊BC上運動時,∠OPQ的大小隨時間t的增大而減小,那么當(dāng)點P在這兩邊上運動時,使∠OPQ =90°的點P有

              ______個(只填結(jié)論,不需解答過程).

 

  圖 ①                           圖②           

解:(1)(11-1)÷10=1(長度單位/秒)

   (2)如圖,作CD⊥x軸于D,作EF∥x軸交y軸、CD分別于點E、F,

∵B(8,4)∴EB=8,OE=4,

             

∴AE=10-4=6,∴AB=BC=,∵∠ABC =90°

∴△BCF≌△ABE,∴BF=AE=6,CF=EB=8,∴CD=12,

OD=EF=EB+BF=14,∴C(14,12);   

(3)作PG⊥y軸于G,則△AGP∽△AEB,∴,∴

    ∴,,∴OG=10-,由圖②,當(dāng)t=0時,x=1,∴OQ=1+t,

SOPQ=

    ∴

    當(dāng)時(在范圍內(nèi)),S最大.

    此時PG=,OG=10-,∴P().  

(4)2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,在△ABC中,AB=AC,AD是△ABC的平分線,DE⊥AB,DF⊥AC,垂足分別是E,F(xiàn).則下面結(jié)論中①DA平分∠EDF;②AE=AF,DE=DF;③AD上的點到B、C兩點距離相等;④圖中共有3對全等三角形,正確的有:
①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,在△ABC中,AB=20cm,AC=12cm,點P從點B出發(fā)以每秒3cm的速度向點A運動,點Q從點A同時出發(fā)以每秒2cm的速度向點C運動,其中一個動點到達(dá)端點時,另一個動點也隨之停止運動,當(dāng)△APQ是等腰三角形時,運動的時間是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,∠BAC=100°,MP、NO分別垂直平分AB、AC,求∠1,∠2的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖,在△ABC中,∠C=90°,DE⊥AB于E,DF⊥BC于F.求證:△DEH∽△BCA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,Rt△ABC中,DC是斜邊AB上的中線,EF過點C且平行于AB.若∠BCF=35°,則∠ACD的度數(shù)是( 。
A、35°B、45°C、55°D、65°

查看答案和解析>>

同步練習(xí)冊答案