在平面直角坐標(biāo)系中有兩點(diǎn)A(-1,2),B(3,2),C是坐標(biāo)軸上的一點(diǎn),若△ABC是直角三角形,則滿足條件的點(diǎn)C有( )
A.3個(gè)
B.4個(gè)
C.5個(gè)
D.6個(gè)
【答案】分析:因?yàn)锳,B的縱坐標(biāo)相等,所以AB∥x軸.因?yàn)镃是坐標(biāo)軸上的一點(diǎn),所以過(guò)點(diǎn)A向x軸引垂線,過(guò)點(diǎn)B向x軸引垂線,分別可得一點(diǎn),根據(jù)直徑所對(duì)的圓周角為直角,以AB為直徑做圓,根據(jù)A和B的坐標(biāo)求出AB的長(zhǎng)度,即為圓的直徑,可得出半徑的長(zhǎng),進(jìn)而判斷得出圓與x軸相切,可得出圓與坐標(biāo)軸交于3點(diǎn).所以滿足條件的點(diǎn)共有5個(gè).
解答:解:根據(jù)題意畫出相應(yīng)的圖形,如圖所示:

分三種情況考慮:當(dāng)A為直角頂點(diǎn)時(shí),過(guò)A作AC⊥x軸,連接BC,此時(shí)滿足題意的點(diǎn)為C1
當(dāng)B為直角頂點(diǎn)時(shí),過(guò)B作BC⊥x軸,連接AC,此時(shí)滿足題意的點(diǎn)為C2;
當(dāng)C為直角頂點(diǎn)時(shí),以AB為直徑作圓,由A(-1,2),B(3,2),得到AB=4,可得此圓與x軸相切,
∴此圓與坐標(biāo)軸有三個(gè)交點(diǎn),分別為C3,C4,C5,
如圖所示,根據(jù)直徑所對(duì)的圓周角為直角可得此3點(diǎn)滿足題意,
綜上,所有滿足題意的C有5個(gè).
故選C.
點(diǎn)評(píng):此題考查了圓周角定理,勾股定理,以及坐標(biāo)與圖形性質(zhì),利用了分類討論及數(shù)形結(jié)合的思想,學(xué)生做題時(shí)注意要全面,不要遺漏解的個(gè)數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、在平面直角坐標(biāo)系中有兩點(diǎn):A(-2,3),B(4,3),C是坐標(biāo)軸x軸上一點(diǎn),若△ABC是直角三角形,則滿足條件的點(diǎn)C共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中有一直角梯形OABC,∠AOC=90°,AB∥OC,OC精英家教網(wǎng)在x軸上,過(guò)A、B、C三點(diǎn)的拋物線表達(dá)式為y=-
1
18
x2+
4
9
x+10

(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)如果在梯形OABC內(nèi)有一矩形MNPO,使M在y軸上,N在BC邊上,P在OC邊上,當(dāng)MN為多少時(shí),矩形MNPO的面積最大?最大面積是多少?
(3)若用一條直線將梯形OABC分為面積相等的兩部分,試說(shuō)明你的分法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中有兩點(diǎn)P(-1,1),Q (2,2),函數(shù)y=kx-1的圖象與線段PQ延長(zhǎng)線相交(交點(diǎn)不包括Q),則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在平面直角坐標(biāo)系中有一個(gè)Rt△OAC,點(diǎn)A(3,4),點(diǎn)C(3,0)將其沿直線AC翻折,翻折后圖形為△BAC.動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿折線0?A?B的方向以每秒2個(gè)單位的速度向B運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),在線段BO上以每秒1個(gè)單位的速度向點(diǎn)O運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t(秒).
(1)設(shè)△OPQ的面積為S,求S與t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(2)如圖2,固定△OAC,將△ACB繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)后得到的三角形為△A′CB′設(shè)A′B′與AC交于點(diǎn)D當(dāng)∠BCB′=∠CAB時(shí),求線段CD的長(zhǎng);
(3)如圖3,在△ACB繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)的過(guò)程中,若設(shè)A′C所在直線與OA所在直線的交點(diǎn)為E,是否存在點(diǎn)E使△ACE為等腰三角形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.精英家教網(wǎng)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中有一個(gè)平行四邊形ABCD,如果將此平行四邊形沿x軸正方向移動(dòng)3個(gè)單位,則各點(diǎn)坐標(biāo)的變化特征是怎樣的?

查看答案和解析>>

同步練習(xí)冊(cè)答案