16.如圖1所示,四邊形AEFG與四邊形ABCD是正方形,其中G、A、B三點(diǎn)在同一直線上.連接DG、BE.完成下面問題:
(1)求證:BE=DG;
(2)如圖2,將正方形AEFG繞點(diǎn)A逆時(shí)針轉(zhuǎn)過一定角度時(shí),小明發(fā)現(xiàn):BE=DG且BE⊥DG,請(qǐng)你幫助小明證明這兩個(gè)結(jié)論;
(3)如圖3,小明還發(fā)現(xiàn):在旋轉(zhuǎn)過程中,分別連接EG、GB、BD、DE的中點(diǎn),得到的四邊形MNPQ是正方形.若AB=a,AE=b其中a>b,你能幫小明求出正方形MNPQ的面積的范圍嗎?寫出過程.

分析 (1)根據(jù)正方形的性質(zhì)得到AD=AB,AE=AG,∠DAG=∠BAE=90°,證明△DAG≌△BAE,根據(jù)全等三角形的性質(zhì)證明結(jié)論;
(2)根據(jù)全等三角形的性質(zhì)和互余的概念以及垂直的定義證明即可;
(3)根據(jù)三角形中位線定理得到MN=$\frac{1}{2}$BE,根據(jù)旋轉(zhuǎn)的性質(zhì)和正方形的面積公式計(jì)算即可.

解答 (1)證明:∵四邊形AEFG與四邊形ABCD是正方形,
∴AD=AB,AE=AG,∠DAG=∠BAE=90°,
在△DAG和△BAE中,
$\left\{\begin{array}{l}{AG=AE}\\{∠DAG=∠BAE}\\{AD=AB}\end{array}\right.$,
∴△DAG≌△BAE,
∴BE=DG;
(2)證明:如圖2,∵∠EAG=∠BAD=90°,
∴∠DAG=∠BAE,
在△DAG和△BAE中,
$\left\{\begin{array}{l}{AG=AE}\\{∠DAG=∠BAE}\\{AD=AB}\end{array}\right.$,
∴△DAG≌△BAE,
∴BE=DG,∠ADG=∠ABE,
∵∠ABE+∠AHB=90°,∠AHB=∠DHE,
∴∠ADG+∠DHE=90°,
∴BE⊥DG,
∴BE=DG且BE⊥DG;
(3)解:∵M(jìn)、N分別是EG、GB的中點(diǎn),
∴MN=$\frac{1}{2}$BE,
∴當(dāng)BE最小時(shí),正方形MNPQ是面積最小,BE最大時(shí),正方形MNPQ是面積最大,
由題意可知,當(dāng)點(diǎn)E旋轉(zhuǎn)到線段AB上時(shí),BE最小為a-b,
當(dāng)點(diǎn)E旋轉(zhuǎn)到線段AB的延長(zhǎng)線上時(shí),BE最答為a+b,
∴$\frac{1}{4}$(a-b)2≤正方形MNPQ的面積≤$\frac{1}{4}$(a+b)2

點(diǎn)評(píng) 本題考查的是正方形的性質(zhì)、三角形全等的判定和性質(zhì)、三角形中位線定理的應(yīng)用,掌握全等三角形的判定定理和性質(zhì)定理、三角形中位線平行于第三邊并且等于第三邊的一半是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

20.若分式$\frac{x+1}{x-2}$的值為零,則( 。
A.x=-2B.x=1C.x=2D.x=-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

7.通過計(jì)算可以得到下列式子:15=1,25=32,35=243,45=1024,55=3125,195=2076099,…,那么:5811的個(gè)位上的數(shù)字是2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.梯形ABCD中,AD∥BC,以A為圓心,DA為半徑的圓經(jīng)過B、C、D三點(diǎn),若AD=10,BC=16,求梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.如圖,已知點(diǎn)A(2,m),B(n,1)在拋物線y=x2的圖象上
(1)求m、n的值;
(2)在y軸上找一點(diǎn)P,使得P到A、B兩點(diǎn)的距離之和最短,求出此時(shí)P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖,O為直線AB上一點(diǎn),OD平分∠AOC,OE平分∠COB,
①問:DO與OE有何關(guān)系?并說明你的理由.
②圖中有幾對(duì)互余的角?試寫出所有你認(rèn)為互余的角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

8.如圖,正六邊形ABCDEF內(nèi)接于圓O,半徑為4,則這個(gè)正六邊形的邊心距OM為2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.已知正方形ABCD中,點(diǎn)E在BC上,連接AE,過點(diǎn)B作BF⊥AE于點(diǎn)G,交CD于點(diǎn)F.

(1)如圖1,連接AF,若AB=4,BE=1,求AF的長(zhǎng);
(2)如圖2,連接BD,交AE于點(diǎn)N,連接AC,分別交BD、BF于點(diǎn)O、M,連接GO,求證:GO平分∠AGF;
(3)如圖3,在第(2)問的條件下,連接CG,若CG⊥GO,求證:AG=$\sqrt{2}$CG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.在數(shù)學(xué)探究課上,老師出示了這樣的探究問題,請(qǐng)你一起來探究:

已知:C是線段AB所在平面內(nèi)任意一點(diǎn),分別以AC、BC為邊,在AB同側(cè)作等邊三角形ACE和BCD,聯(lián)結(jié)AD、BE交于點(diǎn)P.
(1)如圖1,當(dāng)點(diǎn)C在線段AB上移動(dòng)時(shí),線段AD與BE的數(shù)量關(guān)系是:AD=BE.
(2)如圖2,當(dāng)點(diǎn)C在直線AB外,且∠ACB<120°,上面的結(jié)論是否還成立?若成立請(qǐng)證明,不成立說明理由.
(3)在(2)的條件下,∠APE的大小是否隨著∠ACB的大小的變化而發(fā)生變化,若變化,寫出變化規(guī)律,若不變,請(qǐng)求出∠APE的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案