已知二次函數(shù)y=x2-4ax+4a2+a-1(a為常數(shù)),當a取不同的值時,其圖象構(gòu)成一個“拋物線系”.如圖分別是當a=t1,a=t2,a=t3,a=t4時二次函數(shù)的圖象,它們的頂點在一條直線上,則這條直線的解析式是______.
y=x2-4ax+4a2+a-1
=(x-2a) 2+a-1,
∴拋物線頂點坐標為:(2a,a-1),
設x=2a①,y=a-1②,
①-②×2,消去a得,x-2y=2,
即y=
1
2
x-1.
故答案為:y=
1
2
x-1.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

小明在一次高爾夫球的練習中,在某處擊球,其飛行路線滿足拋物線y=-
1
4
x2+2x,其中y(m)是球的飛行高度,x(m)是球飛出的水平距離,結(jié)果球離球洞的水平距離還有2m.
(1)求拋物線的頂點坐標;
(2)求出球飛行的最大水平距離;
(3)若小明第二次仍從此處擊球,使其最大高度不變,而球剛好進洞,則球飛行的路線滿足拋物線的解析式是什么?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線的頂點為(0,4)且與x軸交于(-2,0),(2,0).

(1)直接寫出拋物線解析式;
(2)如圖,將拋物線向右平移k個單位,設平移后拋物線的頂點為D,與x軸的交點為A、B,與原拋物線的交點為P.
①當直線OD與以AB為直徑的圓相切于E時,求此時k的值;
②是否存在這樣的k值,使得點O、P、D三點恰好在同一條直線上?若存在,求出k值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=x2+px+q與x軸交于A、B兩點,且過點(-1,-1),設線段AB的長為d.
(1)用含有p的式子表示q.
(2)求d2與p的關(guān)系式.
(3)當p為何值時,d2取得最小值,并求出最小值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=
1
2
x2+mx+n
交x軸于A、B兩點,交y軸于點C,點P是它的頂點,點A的橫坐標是-3,點B的橫坐標是1.
(1)求m、n的值;
(2)求直線PC解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

圖1至圖4的正方形霓虹燈廣告牌ABCD都是20×20的等距網(wǎng)格(每個小方格的邊長均為1個單位長),其對稱中心為點O.
如圖1,有一個邊長為6個單位長的正方形EFGH的對稱中心也是點O,它以每秒1個單位長的速度由起始位置向外擴大(即點O不動,正方形EFGH經(jīng)過一秒由6×6擴大為8×8;再經(jīng)過一秒,由8×8擴大為10×10;…),直到充滿正方形ABCD,再以同樣的速度逐步縮小到起始時的大小,然后一直不斷地以同樣速度再擴大、再縮。
另有一個邊長為6個單位長的正方形MNPQ從如圖1所示的位置開始,以每秒1個單位長的速度,沿正方形ABCD的內(nèi)側(cè)邊緣按A→B→C→D→A移動(即正方形MNPQ從點P與點A重合位置開始,先向左平移,當點Q與點B重合時,再向上平移,…).
正方形EFGH和正方形MNPQ從如圖1的位置同時開始運動,設運動時間為x秒,它們的重疊部分面積為y個平方單位.
(1)當正方形MNPQ第一次回到起始位置時,正方形EFGH是否也變化到起始位置?
(2)請你在圖2和圖3中分別畫出x為3秒、18秒時,正方形EFGH和正方形MNPQ的位置及重疊部分(重疊部分用陰影表示),并分別寫出重疊部分的面積;
(3)正方形EFGH第一次充滿正方形ABCD之前(即x≤7時),何時正方形EFGH和正方形MNPQ重疊部分的面積為3平方單位.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,要設計一個等腰梯形的花壇,花壇上底長120米,下底長180米,上下底相距80米,在兩腰中點連線(虛線)處有一條橫向通道,上下底之間有兩條縱向通道,各通道的寬度相等.設通道的寬為x米.
(1)用含x的式子表示橫向通道的面積;
(2)當三條通道的面積是梯形面積的八分之一時,求通道的寬;
(3)根據(jù)設計的要求,通道的寬不能超過8米.如果修建通道的總費用(萬元)與通道的寬度成正比例關(guān)系,比例系數(shù)是5.5,花壇其余部分的綠化費用為每平方米0.02萬元,那么當通道的寬度為多少米時,所建花壇的總費用最少?最少費用是多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=-x2+mx-m+2.
(Ⅰ)若拋物線與x軸的兩個交點A、B分別在原點的兩側(cè),并且AB=
5
,試求m的值;
(Ⅱ)設C為拋物線與y軸的交點,若拋物線上存在關(guān)于原點對稱的兩點M、N,并且△MNC的面積等于27,試求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)的解析式為y=-x2+2x+1.
(1)寫這個二次函數(shù)圖象的對稱軸和頂點坐標,并求圖象與x軸的交點坐標;
(2)在給定的坐標系中畫出這個二次函數(shù)大致圖象,并求出拋物線與坐標軸的交點所組成的三角形的面積.

查看答案和解析>>

同步練習冊答案