【題目】下列說法正確的是( )
A.必然事件發(fā)生的概率為0
B.一組數(shù)據(jù)1,6,3,9,8的極差為7
C.“面積相等的兩個三角形全等”這一事件是必然事件
D.“任意一個三角形的外角和等于180°”這一事件是不可能事件
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七年級學(xué)生開展踢毽子比賽活動,每班派5名同學(xué)參加,按團(tuán)體總分多少排列名次,在規(guī)定的時間內(nèi)每人踢100個以上(含100)為優(yōu)秀.下表是甲班和乙班成績最好的5名學(xué)生的比賽數(shù)據(jù)(單位:個)
1號 | 2號 | 3號 | 4號 | 5號 | 合計(jì) | |
甲 | 100 | 98 | 110 | 89 | 103 | 500 |
乙 | 89 | 100 | 95 | 119 | 97 | 500 |
統(tǒng)計(jì)發(fā)現(xiàn)兩班總分相等,SS , 此時有同學(xué)建議,可以通過考查數(shù)據(jù)中的其他信息作為參考,請你解答下列問題:
(1)計(jì)算兩班的優(yōu)秀率;
(2)求兩班比賽數(shù)據(jù)的中位數(shù);
(3)根椐以上信息,你認(rèn)為應(yīng)該把冠軍獎狀發(fā)給哪一個班?簡述理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)的圖象與x軸、y軸分別相交于點(diǎn)A、B,點(diǎn)P在該函數(shù)的圖象上,P到x軸、y軸的距離分別為、.
(1)當(dāng)P為線段AB的中點(diǎn)時,求的值;
(2)直接寫出的范圍,并求當(dāng)時點(diǎn)P的坐標(biāo);
(3)若在線段AB上存在無數(shù)個P點(diǎn),使(a為常數(shù)),求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】畫一條數(shù)軸,在數(shù)軸上標(biāo)出下列各數(shù),再將它們按由大到小的順序用不等號連接起來: ﹣3,﹣(﹣4),﹣1.5,0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形OABC中,O為直角坐標(biāo)系的原點(diǎn),A、B、C的坐標(biāo)分別為(14,0)、(14,3)、(4,3).點(diǎn)P、Q同時從原點(diǎn)出發(fā),分別作勻速運(yùn)動,其中點(diǎn)P沿OA向終點(diǎn)A運(yùn)動,速度為每秒1個單位;點(diǎn)Q沿OC、CB向終點(diǎn)B運(yùn)動,當(dāng)這兩點(diǎn)中有一點(diǎn)到達(dá)自己的終點(diǎn)時,另一點(diǎn)也停止運(yùn)動.設(shè)P從出發(fā)起運(yùn)動了t秒.
(1)如果點(diǎn)Q的速度為每秒2個單位,①試分別寫出這時點(diǎn)Q在OC上或在CB上時的坐標(biāo)(用含t的代數(shù)式表示,不要求寫出t的取值范圍);
②求t為何值時,PQ∥OC?
(2)如果點(diǎn)P與點(diǎn)Q所經(jīng)過的路程之和恰好為梯形OABC的周長的一半,①試用含t的代數(shù)式表示這時點(diǎn)Q所經(jīng)過的路程和它的速度;
②試問:這時直線PQ是否可能同時把梯形OABC的面積也分成相等的兩部分?如有可能,求出相應(yīng)的t的值和P、Q的坐標(biāo);如不可能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明從家出發(fā)(記為原點(diǎn)0)向東走3m,他把數(shù)軸上+3的位置記為點(diǎn)A,他又東走了5m,記為點(diǎn)B,點(diǎn)B表示什么數(shù)?接著他又向西走了10m到點(diǎn)C,點(diǎn)C表示什么數(shù)?請你畫出數(shù)軸,并在數(shù)軸上標(biāo)出點(diǎn)A、點(diǎn)B的位置,這時如果小明要回家,則小明應(yīng)如何走?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,F(xiàn)為AB的中點(diǎn),DE與AB交于點(diǎn)G,EF與AC交于點(diǎn)H,∠ACB=90°,∠BAC=30°.給出如下結(jié)論:①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;其中正確結(jié)論的為(請將所有正確的序號都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)的圖象與x軸、y軸分別交于點(diǎn)A、B,把Rt△AOB繞點(diǎn)A順時針旋轉(zhuǎn)角α(30°<α<180°),得到△AO′B′.
(1)當(dāng)α=60°時,判斷點(diǎn)B是否在直線O′B′上,并說明理由;
(2)連接OO′,設(shè)OO′與AB交于點(diǎn)D,當(dāng)α為何值時,四邊形ADO′B′是平行四邊形?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com