【題目】已知,如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)y= (n為常數(shù)且n≠0)的圖象在第二象限交于點(diǎn)C.CD⊥x軸,垂直為D,若OB=2OA=3OD=6.

(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求兩函數(shù)圖象的另一個(gè)交點(diǎn)坐標(biāo);
(3)直接寫出不等式;kx+b≤ 的解集.

【答案】
(1)

解:∵OB=2OA=3OD=6,

∴OB=6,OA=3,OD=2,

∵CD⊥OA,

∴DC∥OB,

,

=

∴CD=10,

∴點(diǎn)C坐標(biāo)(﹣2,10),B(0,6),A(3,0),

解得

∴一次函數(shù)為y=﹣2x+6.

∵反比例函數(shù)y= 經(jīng)過(guò)點(diǎn)C(﹣2,10),

∴n=﹣20,

∴反比例函數(shù)解析式為y=﹣


(2)

解:由 解得 ,

故另一個(gè)交點(diǎn)坐標(biāo)為(5,﹣4)


(3)

解:由圖象可知kx+b≤ 的解集:﹣2≤x<0或x≥5.


【解析】(1)先求出A、B、C坐標(biāo),再利用待定系數(shù)法確定函數(shù)解析式.(2)兩個(gè)函數(shù)的解析式作為方程組,解方程組即可解決問(wèn)題.(3)根據(jù)圖象一次函數(shù)的圖象在反比例函數(shù)圖象的下方,即可解決問(wèn)題,注意等號(hào).本題考查一次函數(shù)與反比例函數(shù)的交點(diǎn)問(wèn)題,解題的關(guān)鍵是學(xué)會(huì)利用待定系數(shù)法確定函數(shù)解析式,知道兩個(gè)函數(shù)圖象的交點(diǎn)坐標(biāo)可以利用解方程組解決,學(xué)會(huì)利用圖象確定自變量取值范圍,屬于中考?碱}型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某數(shù)學(xué)興趣小組同學(xué)進(jìn)行測(cè)量大樹CD高度的綜合實(shí)踐活動(dòng),如圖,在點(diǎn)A處測(cè)得直立于地面的大樹頂端C的仰角為36°,然后沿在同一剖面的斜坡AB行走13米至坡頂B處,然后再沿水平方向行走6米至大樹腳底點(diǎn)D處,斜面AB的坡度(或坡比)i=1:2.4,那么大樹CD的高度約為(參考數(shù)據(jù):sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)(  )

A.8.1米
B.17.2米
C.19.7米
D.25.5米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y= x+2與雙曲線相交于點(diǎn)A(m,3),與x軸交于點(diǎn)C.

(1)求雙曲線解析式;
(2)點(diǎn)P在x軸上,如果△ACP的面積為3,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四張編號(hào)為A,B,C,D的卡片(除編號(hào)外,其余完全相同)的正面分別寫上如圖所示正整數(shù)后,背面朝上,洗勻放好,現(xiàn)從中隨機(jī)抽取一張(不放回),再?gòu)氖O碌目ㄆ须S機(jī)抽取一張.

(1)請(qǐng)用樹狀圖或列表的方法表示兩次抽取卡片的所有可能出現(xiàn)的結(jié)果(卡片用A,B,C,D表示);
(2)我們知道,滿足a2+b2=c2的三個(gè)正整數(shù)a,b,c成為勾股數(shù),求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:2sin45°﹣32+(﹣ 0+| ﹣2|+

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校將為初一學(xué)生開設(shè)ABCDEF共6門選修課,現(xiàn)選取若干學(xué)生進(jìn)行了“我最喜歡的一門選修課”調(diào)查,將調(diào)查結(jié)果繪制成如圖統(tǒng)計(jì)圖表(不完整)

選修課

A

B

C

D

E

F

人數(shù)

40

60

100

根據(jù)圖表提供的信息,下列結(jié)論錯(cuò)誤的是(  )

A.這次被調(diào)查的學(xué)生人數(shù)為400人
B.扇形統(tǒng)計(jì)圖中E部分扇形的圓心角為72°
C.被調(diào)查的學(xué)生中喜歡選修課E,F(xiàn)的人數(shù)分別為80,70
D.喜歡選修課C的人數(shù)最少

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正△ABC的邊長(zhǎng)為4,點(diǎn)P為BC邊上的任意一點(diǎn)(不與點(diǎn)B、C重合),且∠APD=60°,PD交AB于點(diǎn)D.設(shè)BP=x,BD=y,則y關(guān)于x的函數(shù)圖象大致是( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P(x0 , y0)和直線y=kx+b,則點(diǎn)P到直線y=kx+b的距離證明可用公式d= 計(jì)算.
例如:求點(diǎn)P(﹣1,2)到直線y=3x+7的距離.
解:因?yàn)橹本y=3x+7,其中k=3,b=7.
所以點(diǎn)P(﹣1,2)到直線y=3x+7的距離為:d= = = =
根據(jù)以上材料,解答下列問(wèn)題:
(1)求點(diǎn)P(1,﹣1)到直線y=x﹣1的距離;
(2)已知⊙Q的圓心Q坐標(biāo)為(0,5),半徑r為2,判斷⊙Q與直線y= x+9的位置關(guān)系并說(shuō)明理由;
(3)已知直線y=﹣2x+4與y=﹣2x﹣6平行,求這兩條直線之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABBC,射線CMBC,且BC=4,AB=1,點(diǎn)P是線段BC(不與點(diǎn)B、C重合)上的動(dòng)點(diǎn),過(guò)點(diǎn)PDPAP交射線CM于點(diǎn)D,連結(jié)AD.

(1)如圖1,若BP=3,求△ABP的周長(zhǎng);

(2)如圖2,若DP平分∠ADC,試猜測(cè)PBPC的數(shù)量關(guān)系,并說(shuō)明理由;

(3)若△PDC是等腰三角形,作點(diǎn)B關(guān)于AP的對(duì)稱點(diǎn)B′,連結(jié)B′D,則B′D=_____.(請(qǐng)直接寫出答案)

查看答案和解析>>

同步練習(xí)冊(cè)答案