【題目】在△ABC中,∠ABC=45°,tan∠ACB= .如圖,把△ABC的一邊BC放置在x軸上,有OB=14,OC= ,AC與y軸交于點E.

(1)求AC所在直線的函數(shù)解析式;
(2)過點O作OG⊥AC,垂足為G,求△OEG的面積;
(3)已知點F(10,0),在△ABC的邊上取兩點P,Q,是否存在以O(shè),P,Q為頂點的三角形與△OFP全等,且這兩個三角形在OP的異側(cè)?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.

【答案】
(1)

解:在Rt△OCE中,OE=OCtan∠OCE= =2 ,∴點E(0,2 ).

設(shè)直線AC的函數(shù)解析式為y=kx+2 ,有 ,解得:k=-

∴直線AC的函數(shù)解析式為y=


(2)

解:在Rt△OGE中,tan∠EOG=tan∠OCE= = ,

設(shè)EG=3t,OG=5t,OE= = t,∴ ,得t=2,

故EG=6,OG=10,

∴SOEG=


(3)

解:存在.

①當點Q在AC上時,點Q即為點G,

如圖1,作∠FOQ的角平分線交CE于點P1,

由△OP1F≌△OP1Q,則有P1F⊥x軸,由于點P1在直線AC上,當x=10時,

y=﹣ = ,

∴點P1(10, ).

②當點Q在AB上時,

如圖2,有OQ=OF,作∠FOQ的角平分線交CE于點P2,

過點Q作QH⊥OB于點H,設(shè)OH=a,

則BH=QH=14﹣a,

在Rt△OQH中,a2+(14﹣a)2=100,

解得:a1=6,a2=8,

∴Q(﹣6,8)或Q(﹣8,6).

連接QF交OP2于點M.

當Q(﹣6,8)時,則點M(2,4).

當Q(﹣8,6)時,則點M(1,3).

設(shè)直線OP2的解析式為y=kx,則

2k=4,k=2.

∴y=2x.

解方程組 ,得

∴P2 );

當Q(﹣8,6)時,則點M(1,3),

同理可求P3 );

如圖4,由QP4∥OF,QP4=OF=10,

設(shè)點P4的橫坐標為x,則點Q的橫坐標為(x﹣10),

∵yQ=yP,直線AB的函數(shù)解析式為:y=x+14,

∴x﹣10+14=﹣ x+2 ,

解得:x= ,可得y=

∴點P4 , ),

③當Q在BC邊上時,如圖5,OQ=OF=10,點P5在E點,

∴P5(0,2 ),

綜上所述,滿足條件的P點坐標為(10, )或( )或( )或(0,2 ),( , ).


【解析】(1)根據(jù)三角函數(shù)求E點坐標,運用待定系數(shù)法求解;(2)在Rt△OGE中,運用三角函數(shù)和勾股定理求EG,OG的長度,再計算面積;(3)分兩種情況討論求解:①點Q在AC上;②點Q在AB上③當Q在BC邊上時.求直線OP與直線AC的交點坐標即可.
【考點精析】認真審題,首先需要了解二次函數(shù)的性質(zhì)(增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在直線上順次取 A,B,C 三點,分別以 AB,BC 為邊長在直線的同側(cè)作正三角形, 作得兩個正三角形的另一頂點分別為 D,E

(1)如圖①,連結(jié) CDAE,求證:CDAE;

(2)如圖②,若 AB1,BC2,求 DE 的長;

(3)如圖③,將圖②中的正三角形 BCE B 點作適當?shù)男D(zhuǎn),連結(jié) AE,若有 DE2BE2AE2,試求∠DEB 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=2∠DAB=60°,EAD邊的中點,點MAB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD,AN.

1)求證:四邊形AMDN是平行四邊形;

2)填空:AM的值為 時,四邊形AMDN是矩形;AM的值為 時,四邊形AMDN是菱形。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

(1)求出△ABC的面積;

(2)在圖中作出△ABC關(guān)于y軸的對稱圖形△A1B1C1;

(3)寫出點A1,B1,C1的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB,延長ACE,使CE=AC.

(1)求證:DE=DB;

(2)連接BE,試判斷△ABE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定角度后得到△ABE,如圖所示,如果AF=4,AB=7,

1)指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角度;

2)求DE的長度;

3BEDF的位置關(guān)系如何?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在ABCD中,點F在AB的延長線上,且BF=AB,連接FD,交BC于點E.
(1)說明△DCE≌△FBE的理由;
(2)若EC=3,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖A在數(shù)軸上所對應(yīng)的數(shù)為﹣2

1)點B在點A右邊距A4個單位長度,求點B所對應(yīng)的數(shù);

2)在(1)的條件下,點A以每秒2個單位長度沿數(shù)軸向左運動,點 B 以每秒2個單位長度沿數(shù)軸向右運動,當點A運動到﹣6所在的點處時,求AB兩點間距離.

3)在2)的條件下,現(xiàn)A點靜止不動,B點再以每秒2個單位長度沿數(shù)軸向左運動時,經(jīng)過多長時間A,B兩點相距4個單位長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,用三種大小不等的正方形①②③和個缺角的正方形拼成一個長方形ABCD(不重疊且沒有縫隙),若GHa,GKa+1,BFa﹣2

(1)試用含a的代數(shù)式表示:正方形②的邊長CM的長=   ,正方形③的邊長DM的長=   

(2)求長方形ABCD的周長(用含a的代數(shù)式表示);并求出當a=3時,長方形周長的值.

查看答案和解析>>

同步練習冊答案